
Security and Privacy Failures in Popular 2FA Apps

Conor Gilsenan
UC Berkeley / ICSI

Fuzail Shakir
UC Berkeley

Noura Alomar
UC Berkeley

Serge Egelman
UC Berkeley / ICSI

Abstract
The Time-based One-Time Password (TOTP) algorithm is

a 2FA method that is widely deployed because of its relatively
low implementation costs and purported security benefits over
SMS 2FA. However, users of TOTP 2FA apps face a criti-
cal usability challenge: maintain access to the secrets stored
within the TOTP app, or risk getting locked out of their ac-
counts. To help users avoid this fate, popular TOTP apps
implement a wide range of backup mechanisms, each with
varying security and privacy implications. In this paper, we
define an assessment methodology for conducting system-
atic security and privacy analyses of the backup and recovery
functionality of TOTP apps. We identified all general purpose
Android TOTP apps in the Google Play Store with at least
100k installs that implemented a backup mechanism (n = 22).
Our findings show that most backup strategies end up plac-
ing trust in the same technologies that TOTP 2FA is meant
to supersede: passwords, SMS, and email. Many backup im-
plementations shared personal user information with third
parties, had serious cryptographic flaws, and/or allowed the
app developers to access the TOTP secrets in plaintext. We
present our findings and recommend ways to improve the
security and privacy of TOTP 2FA app backup mechanisms.

1 Introduction

Though passwords are still the predominant authentication
method [17,40], it is well established that most people cannot
create strong passwords [32, 33, 68]. Two-factor authentica-
tion (2FA)—logging in with a combination of at least two
of something you know, something you physically have, and
something you are—has consistently been shown to signifi-
cantly increase the security of online accounts compared to
the use of a password alone [24, 71]. The Time-based One-
Time Passwords (TOTP) algorithm [8] is a 2FA method that
is widely deployed, including at some of the largest sites on
the Internet [1]. In addition to a username/password, TOTP
requires the user to enter a one-time password (OTP) to lo-
gin. In practice, these OTPs are typically 6-digit codes that

Figure 1: Screenshot of the Google Authenticator TOTP app.

are generated by a TOTP authenticator app1 installed on the
user’s phone/mobile device (Figure 1), which change to a
unique value periodically (typically, every 30 seconds).

TOTP 2FA is often promoted as a more secure method of
2FA than SMS 2FA [25], which inherits many vulnerabili-
ties from the telecommunication networks on which SMS
operates [44, 45]. In contrast, TOTP apps can generate OTPs
without any network connection by using a locally-stored
secret obtained from the server during setup. However, TOTP
2FA places a critical usability burden on users: maintain ac-
cess to these shared secrets, or risk getting locked out of their
account(s). In practice, these secrets are routinely lost; people
lose their devices, buy new ones, or uninstall their TOTP apps.
Without the TOTP shared secret, the user cannot generate the
OTPs required to authenticate and could face account lockout.

To combat this usability nightmare, many TOTP apps pro-
vide custom backup mechanisms to help users recover from
device loss. These backup features are critical usability en-
hancements, but it is understudied how they impact the se-
curity and privacy of the millions of people who use these
TOTP apps on a daily basis. Thus, our goal was to compre-
hensively investigate the security and privacy issues that exist
in the backup mechanisms of the most used TOTP apps. Our
research questions included:

1For brevity, we refer to “TOTP apps” throughout this paper.



RQ1 What personal information, if any, is leaked to the com-
pany that develops the TOTP app, or other third parties,
as a result of using the TOTP backup mechanisms?

RQ2 What is the risk of an attacker obtaining a TOTP backup?
RQ3 What is the risk of an attacker compromising the TOTP

secret(s) stored within an obtained TOTP backup?

To answer these questions, we identified all general purpose
Android TOTP apps in the Google Play Store with at least
100k installs that implemented a backup mechanism (n = 22).
For each app, we manually registered TOTP accounts and
exercised the available backup mechanism(s) while recording
plaintext network traffic. If we determined that encryption
beyond TLS was used, we performed a cryptanalysis of the
app to determine how the implementation and/or use of cryp-
tography impacted the security of the TOTP backup.

While TOTP 2FA is often billed as a security enhancement
relative to passwords and SMS-based 2FA [25], our analy-
sis found that most backup strategies end up placing trust in
the same technologies that TOTP 2FA is meant to supersede:
passwords, SMS, and email. The most commonly-supported
backup mechanisms were syncing encrypted TOTP backups
automatically to the cloud and leveraging the built-in Android
Auto Backup system. Alarmingly, two apps sent the plain-
text TOTP secrets to the app developer. Apps that encrypted
TOTP backups had a wide range of serious vulnerabilities.
Several apps (n = 4) sent both the encrypted backup and the
encryption key (or the password from which it was derived)
to the app developer, allowing them to decrypt the backup and
read its content. Nearly all apps that encrypted TOTP backups
derived a key from a user-provided password, but most also
had severely inadequate password policies and/or used weak
methods of deriving a key from the password. As a result, the
ciphertexts were vulnerable to trivial offline attacks. More
than half (n = 12) of the apps we analyzed allowed the user
to manually or automatically create plaintext TOTP backups,
but only two of those apps warned the user about the risk of
doing so. Our contributions are as follows:

• We present a methodology for evaluating the security
and privacy properties of backup mechanisms in TOTP
apps, using both dynamic analysis and cryptanalysis.

• We show that many popular 2FA apps use vulnerable
security mechanisms, thereby exposing TOTP secrets.

• We show that many popular TOTP apps leak user in-
formation, including the names of the websites/services
they use and their account usernames on those platforms.

2 TOTP Overview

While enabling TOTP 2FA, the website/service typically in-
structs the user to install a TOTP authenticator app (often
recommending one or more specific apps) and scan a QR
code displayed in their browser. Doing so shares three key
pieces of information with the TOTP app:

1. Issuer: the name of the website/service on which the
user is currently setting up TOTP 2FA;

2. Label: the user’s account username; and
3. Secret: a random secret generated by the website/service

that is unique to the user’s account.

The secret is used by the app to generate and display the
periodically-changing OTPs, while the issuer and label are
used to visually indicate which OTPs go with which accounts.

The TOTP RFC [8] specifies how the client (i.e., the app)
and server (i.e., the website/service) should utilize a shared
secret to generate and validate a deterministic OTP during au-
thentication. However, many practical implementation consid-
erations are out of its scope. For example, it does not suggest
any mechanism to securely transfer the shared secret from
server to client. A publication by Google [5] has become the
de facto standard to fill this gap and defines how to transfer
the issuer, label, secret, and other data using QR codes.

3 Related Work

In this section, we provide an overview of related work on
account recovery and mobile app analysis.

3.1 2FA and Account Recovery
It is well established that a major road block to 2FA adop-
tion in general is the fear of losing physical authenticators.
FIDO2 [31], which is supported by all major browsers, pro-
vides an authentication mechanism that relies on physical
possession of a device and is resistant to phishing attacks,
but research has consistently found that users are concerned
about losing their authenticator and getting locked out of their
accounts [19,21,29,47,53,64]. After evaluating 12,500 crowd-
sourced comments about 5 prevalent MFA mobile apps, Das
et al. [23] called for improvements to backup and recovery
mechanisms to eliminate account lockout concerns. As a re-
sult, websites commonly implement alternative methods of
authentication that do not require physical possession of a
device: security questions, email, and SMS.

Email Due to known security and usability issues with
“knowledge-based recovery questions” [16, 24, 57, 67], web-
sites often rely on email to complete account recovery. Li et
al. [46] found that allowing password recovery via email alone
was nearly ubiquitous among the Alexa Top 500. Doerfler
et al. [24] analyzed large, real-world data sets from Google
and found that sending an OTP to a secondary email address
encountered significant usability and security issues. Raponi
and Di Pietro [58] proposed a scheme to address the risk of
internal attackers at email providers hijacking email accounts.

SMS Doerfler et al. found that SMS 2FA was highly effec-
tive against automated attacks by bots, but only prevented
76% of targeted attacks [24]. While SMS 2FA has one of



the most usable recovery processes of any device-based 2FA
(because SIM cards can be replaced by service providers),
this property reveals that SMS 2FA does not actually rely
on physical possession. SMS 2FA is not considered a secure
authentication mechanism due to the ease of hijacking phone
numbers [20, 44]. After observing the prevalence of recycled
phone numbers actively associated with the accounts of the
previous owner, Lee and Narayanan [45] concluded that web-
sites/services “...should no longer equate a correctly-entered
SMS passcode with successful user authentication.”

TOTP Gilsenan et al. previously identified several security
and privacy issues in the Authy Android app [35], but research
is needed to determine whether those issues are pervasive
across other popular TOTP 2FA apps.

Polleit and Spreitzenbarth [56] reviewed 16 Android TOTP
apps based on user ratings. They reported where and how each
app stored the TOTP secrets on the device and performed a
basic analysis of network traffic captured with mitmproxy.
In contrast, our analysis encompassed the entire backup and
recovery workflow and we performed a significantly more
thorough review of the traffic generated by apps in our dataset.
Leveraging user ratings as a filtering heuristic caused them
to review several apps with small install counts, some less
than 1,000. In our work, we analyzed all TOTP 2FA apps
in the Google Play Store with over 100,000 installs that sup-
ported a backup mechanism; our dataset included 22 apps that
comprised over 180 million installs.

Ozkan and Bicakci [54] reviewed 11 popular Android
TOTP apps and showed that they could read the plaintext
TOTP secrets from storage for 5 apps and from memory for 7
apps. However, they considered a different threat model than
us; the attacker possessed the device and had root access.

3.2 Mobile App Analysis
Over the past decade, many researchers have examined the
privacy and security implications of mobile apps (e.g., [30,
42, 70, 72]). Most current approaches to analyzing mobile
app behaviors rely on static analysis [34, 37, 43, 80]: reverse-
engineering sequences of program code to infer application
behavior. This method invariably falls short in that it can
only detect what behaviors or capabilities a program might
have, and not whether and to what extent a program actually
engages in these behaviors. For example, it is impossible
in general to predict the full set of branches that a program
will take. Other techniques like taint tracking [28], which
modify application data so that it can be observed traversing
through an application, have other problems (e.g., impacting
application stability) [18].

A more recent approach is adding instrumentation to the
Android operating system itself to monitor third-party apps’
access to sensitive user data at runtime [73, 77–79]. This al-
lows researchers to examine a wide range of app behavior,
including app-associated network traffic. Prior solutions to

monitoring mobile app transmissions generally involve us-
ing proxy software (e.g., Charles Proxy,2 Wireshark,3 mitm-
proxy4) and suffer from serious shortcomings. First, all device
traffic is usually routed through the proxy, without automat-
ically identifying which traffic came from which app run-
ning on the device. While some traffic may contain clues
(e.g., content and headers that may identify apps, e.g., HTTP
User-Agent headers), other traffic does not, and disambiguat-
ing the identity of the app is a laborious and uncertain pro-
cess [59]. Second, proxies cannot automatically decode var-
ious obfuscations, including TLS with certificate pinning.
Instead, by capturing traffic from the monitored device’s OS,
these problems can be avoided: certificate pinning can be
bypassed, decryption keys can be extracted from memory,
and individual sockets can be mapped to process names (pro-
viding strong attribution to individual apps). We utilized this
type of platform-level instrumentation in our analysis.

4 Methods

In this section, we explain how we selected the 22 TOTP 2FA
Android apps to analyze and the systematic procedure that
we used to analyze each app.

Throughout the rest of the paper, we use the term plaintext
to refer to data that is not end-to-end (e2e) encrypted before
leaving the app. We use the term encrypted to indicate that
the app applied e2e encryption prior to transmission (i.e.,
regardless of whether TLS was used for transmission; all apps
tested used TLS when transmitting backup data).

While there are myriad ways an attacker can compromise a
device that is in their physical possession, we consider these
attacks out of scope. Instead, our analysis focused on the
threat model of an attacker obtaining the data contained in a
TOTP backup (e.g., the secret, label, and issuer) once it leaves
the local device. We assume that the Android device is free
of malware and has the latest security updates applied.

4.1 App Selection

In November and December 2021, we identified as many
TOTP apps in the Google Play Store as possible. To start,
we created a list of core search terms that we knew from per-
sonal experience would return TOTP apps (e.g., “totp”, “2fa”,
“two factor”, “mfa”, and “multifactor”). We entered each core
search term into the search box on the Google Play Store and
incorporated the top 5 auto-completion suggestions.5

We queried the Google Play Store for each unique search
term and downloaded the metadata for the top 30 apps dis-
played in each query result set. Removing duplicates yielded

2https://www.charlesproxy.com/
3https://www.wireshark.org/
4https://mitmproxy.org/
5See Section 7 for supplemental material available online.

https://www.charlesproxy.com/
https://www.wireshark.org/
https://mitmproxy.org/


546 apps. We further narrowed the candidate pool by exclud-
ing 193 apps that had fewer than 100,000 installs and 263
apps whose description did not contain any of the final search
terms. The remaining 90 apps were each reviewed manually
to determine whether they were, in-fact, TOTP 2FA apps.

We focused exclusively on apps whose primary focus was
2FA and could be used on any site that supports TOTP. We
excluded any apps that only worked on a specific service
(e.g., Blizzard Authenticator). For purposes of practicality and
scope, we excluded multipurpose apps that offer TOTP sup-
port amongst other functionality (e.g., password managers).
Analyzing the 22 TOTP apps that satisfied our criteria took a
significant amount of time and effort. While many TOTP apps
include some cryptographic features that are outside of our
scope (e.g., push 2FA, encrypting local storage), many pass-
word managers use cryptography much more extensively than
TOTP apps, which would make analysis even more complex.

4.2 App Analysis
For each app in our data set, we downloaded the Android
Package (APK) file from the Google Play Store using a non-
rooted Pixel 3a phone, the Android Debug Bridge (ADB), and
a custom shell script.6 We analyzed each APK using the three
phases described in the following subsections.

4.2.1 Exploring the App

The first step of analysis was to explore the app and document
its various features and settings. We recorded whether the app
required any personal information to use the app at all. For
example, the Twilio Authy app required the user to provide an
email address and prove control of a phone number.

We also answered a range of other questions that could
be determined by using the app. What personal information,
if any, is required to enable/utilize the backup mechanism?
What backup mechanisms does the app support (e.g., remote
backups, manual exports, transfer via QR code, etc.)? If re-
mote backups are available, where are they stored (e.g., the
developer’s cloud service, Google Drive, etc.)?

If the backup mechanism required creating a password,
then we attempted to manually determine the password policy,
including minimum required length and use of a block list.

Finally, we created a customized checklist that enumerated
exactly which actions to take within the app and which data to
enter (e.g., phone numbers, email addresses, and passwords)
while recording the network traffic. Each checklist included a
core set of steps designed to replicate the real world actions
that a user would take when first using the app, enabling its
backup mechanism, and eventually executing the recovery
process. We believe that a reasonable user executing these
steps would not expect any of their personal information to
be sent remotely in plaintext, unless they were informed.

6https://github.com/blues-lab/getapk

We specifically documented details about each app’s recov-
ery workflow so that we could determine which attack vectors
were available to an attacker attempting to impersonate a user
and obtain the TOTP backup remotely.

4.2.2 Capturing & Reviewing Network Traffic

After becoming familiar with the app, we followed the cus-
tomized checklist to exercise the app’s backup and recovery
mechanisms in a controlled environment and noted which
information, if any, was sent remotely. The goals of this phase
were to (1) identify any plaintext TOTP fields in backups that
were transmitted remotely and (2) record any fields in the
TOTP backups that appeared to be encrypted.

We installed each app on a Pixel 3a phone running a custom
version of Android 9 (initially developed in prior research [60,
63,77,78] and commercially maintained by AppCensus7) that
recorded plaintext network traffic to file8. A variety of open
source tools for collecting network traffic (e.g., mitmproxy,9

Magisk,10 and Frida11) can be used to verify our results and,
we believe, reproduce our findings from scratch.

We ensured that each phone had a SIM/phone number and
a registered Google account. For reference and complete-
ness, the phone’s screen was recorded as an mp4 video using
scrcpy12 during the network logging session. The ability to
retroactively review the specific actions that led to a specific
transmission proved to be an invaluable time-saving resource.

As mentioned previously, the most common method of
setting up TOTP 2FA is for the user to scan a QR code using
the TOTP app. We followed the de facto standard [5] to create
two QR codes that encoded specific values for the issuer,
label, and secret fields. Using these QR codes throughout
our analysis allowed us to check whether these known values
appeared in the network traffic generated by each app.

After recording, we reviewed the network traffic to identify
which request/response calls were responsible for sending
the TOTP backup to the remote storage service, if any. We
checked whether the network traffic contained any known
values, such as passwords entered to enable the backup mech-
anism and any of the fields encoded in our custom QR codes.
Finally, we documented the value of any field that appeared
to be encrypted so that it could be further analyzed in detail.

4.2.3 Performing Cryptanalysis

If the collected network traffic contained any encrypted fields,
we performed a cryptanalysis of the app to determine which
cryptographic primitives were used to create the ciphertext in

7https://appcensus.io
8See Section 7 for supplemental material available online.
9https://mitmproxy.org/

10https://github.com/topjohnwu/Magisk
11https://frida.re/docs/android/
12https://github.com/Genymobile/scrcpy

https://github.com/blues-lab/getapk
https://appcensus.io
https://mitmproxy.org/
https://github.com/topjohnwu/Magisk
https://frida.re/docs/android/
https://github.com/Genymobile/scrcpy


the TOTP backup and how they were configured. Understand-
ing these details is critical to assessing the overall security of
the app’s backup mechanism because any attacker with access
to the ciphertext would attempt to learn the same information
to launch an offline attack.

For apps that were not open sourced, we decompiled the
APK using the jadx decompiler.13 Analyzing obfuscated code
was often complex. We identified potentially-relevant code
by searching for static strings used in crypto libraries (e.g.,
AES, PBKDF2), compared function signatures to open source
crypto libraries (e.g., Bouncy Castle14 and libsodium15), and
manually refactored the code to improve readability.

Our cryptanalysis consisted of two main phases. In the
first phase, we reviewed the code to determine how the app
obtained the encryption key used to generate the ciphertext
in the TOTP backup. The most prevalent backup architecture
among the apps we analyzed involved deriving a symmetric
encryption key from a user-provided backup password. There-
fore, we documented the key derivation function (KDF) that
was used and how it was configured, including whether or not
a salt was used and, if so, whether it was random or static.

In the second phase, we focused on determining the cryp-
tographic primitives used to produce the ciphertext, including
which encryption ciphers were used, their modes of operation,
and the method of authentication, if any. Most apps did not
provide any integrity over the ciphertext, so we recorded any
custom heuristics used to determine whether or not the correct
backup password was provided during recovery. For example,
some apps checked whether the decrypted backup was a valid
JSON object. These are the same heuristics that an attacker
would use in an offline attack.

Many of the apps that we analyzed implemented multi-
ple features that relied on various methods of cryptography.
Therefore, we could not assume that our observations and
assumptions about the cryptography used to generate the ci-
phertext in the TOTP backup were correct. To prove that we
had identified the correct cryptographic primitives and con-
figurations, we implemented the app’s decryption process in
a separate script16 that accepted the following inputs: (1) the
ciphertext and IV from the network traffic; if applicable, (2)
the password that we chose when enabling the backup mecha-
nism, and (3) any salt passed to a KDF. We manually verified
whether the decryption process was correctly implemented
by looking for known values in the resulting plaintext, such
as the TOTP secret from our custom QR codes.

5 Results

In this section, we explain the various backup mechanisms
available in the apps that we analyzed and discuss the security

13https://github.com/skylot/jadx
14https://www.bouncycastle.org/
15https://libsodium.org
16See Section 7 for supplemental material available online.

and privacy implications of each.

5.1 Backup without the Network
Like the de facto standard [5] for initially transferring TOTP
data from the website/service to the TOTP app, 7 apps (see
Table 1) leveraged QR codes to allow users to optically trans-
fer TOTP secrets between devices without the risk of sending
data over the network (RQ2). Of these, several bury this fea-
ture below multiple menu layers, decreasing the odds that
users will find the feature unless specifically looking for it.

Manual export via QR code is the only backup mechanism
supported by Google Authenticator, the app with the most
installs (n = 100M+) by a factor of 2 or more. Google stated
that balancing security and usability was a specific motivation
when it rolled out support for this feature and highlighted that
“...physical access to [the] phone and the ability to unlock it”
is required [39]. Google Authenticator also records an audit
log that allows users to detect suspicious secret transfers.

While backups via QR code prioritize confidentiality and
integrity, the mechanism falls short on availability. Scanning
a QR code with another personal device is inherently a man-
ual activity. Users must own one or more secondary devices,
know their location, and physically transfer TOTP data from
their primary device to their secondary device(s) each time
they add a new account. We believe it is likely that many users
will not perform this backup ritual reliably because prior work
has found that people are often unsuccessful at regularly cre-
ating manual backups for their devices in general [61]. While
periodic nudges or other reminder techniques may increase
the manual backup rate, many users could face account lock-
out when they inevitably forget to backup some TOTP secrets
and actually need to recover.

The threat model for some users may demand the security
benefits of using QR codes to transfer TOTP secrets between
devices, but we suspect that most users will prefer more au-
tomated solutions. To enable any type of automated backup
system, some data must inevitably be sent over the network.

5.2 Remote Backups without Encryption
As shown in Table 1, more than half (12) of the apps in our
dataset, comprising almost 8 million installs, are capable of
backing up the TOTP data in plaintext. The majority of these
apps (10) supported sharing plaintext backups directly via
the standard Android sharing menu (e.g., via email, SMS,
etc.), copying the plaintext backup to the clipboard, and/or
exporting the plaintext backup to the device file system where
it could be shared like any other file.

Just 3 apps supported plaintext cloud sync, which sent all of
the TOTP fields (secret, label, issuer) to the cloud in plaintext.
The Latch app automatically sent all TOTP fields to Latch
servers in plaintext with no option for users to opt out. This
was the only backup mechanism the Latch app provided to its

https://github.com/skylot/jadx
https://www.bouncycastle.org/
https://libsodium.org


Backup Mechanisms
Cloud Sync File Export SharingAbbreviated Name APK id@version Installs QR

Codes Plaintext Encrypted Plaintext Encrypted Plaintext Encrypted
Android
Backup

Google Authenticator com.google.android.apps.authenticator2@v5.10 100M+ Y - - - - - - -
Microsoft Authenticator com.azure.authenticator@v6.2204.2757 50M+ - - Y* - - - - -
Duo Mobile com.duosecurity.duomobile@v4.15.0 10M+ - - Y - - - - -
Twilio Authy com.authy.authy@v24.8.5 10M+ - - Y - - - - -
Latch com.elevenpaths.android.latch@v2.2.4 5M+ - Y - - - - - -
LastPass Authenticator com.lastpass.authenticator@v2.5.0 1M+ - - (Y) - - - - -
2FAS com.twofasapp@v3.11.0 1M+ - Y Y* Y Y Y Y -
Yandex.Key ru.yandex.key@v2.7.0 1M+ - - Y* - - - - -
FreeOTP Authenticator org.fedorahosted.freeotp@v1.5 1M+ - - - - - - - Y
Authenticator com.pixplicity.auth@v1.0.6 500k+ Y - - - - Y Y* -
Salesforce Authenticator com.salesforce.authenticator@v3.8.5 500k+ - - Y* - - - - -
Code Generator net.codemonkey.otpgeneratorapp@v6.1 500k+ - - - Y - - - Y
TOTP Authenticator com.authenticator.authservice2@v1.89 100k+ Y - Y* - Y* Y Y Y
Aegis Authenticator com.beemdevelopment.aegis@v2.0.3 100k+ - - - Y Y Y Y Y
Auth0 Guardian com.auth0.guardian@v1.5.3 100k+ - - - - - - - Y
App Authenticator authentic.your.app.authenticator@v1.5 100k+ Y - - - Y* Y - Y
andOTP org.shadowice.flocke.andotp@v0.9.0.1-play 100k+ Y - - Y Y^ - - Y
Zoho OneAuth com.zoho.accounts.oneauth@v2.1.0.5 100k+ - - Y* - - - -
Authenticator Pro me.jmh.authenticatorpro@v1.15.10 100k+ - - - Y Y - - -
SAASPASS com.solidpass.saaspass@v2.2.28 100k+ - Y - - - - - -
Authentic Password authentic.password.authenticator.pro@v1.3 100k+ Y - - - - Y - Y
Mobile Authenticator authenticator.mobile.authenticator@v1.7 100k+ Y - - - - Y - Y

TOTAL apps - 7 3 9 5 6 7 4 9
TOTAL installs 181.5M+ 101M+ 6.1M+ 73.7M+ 1.8M+ 1.5M+ 2M+ 1.7M+ 2.2M+

Table 1: Overview of the backup mechanisms supported in each app. Y* indicates that there is a serious security flaw in the
implementation and/or usage of cryptography (see Section 5.3). Y^ indicates support for multiple types of encrypted file exports
(see Section 5.3.4). Values in parentheses were obtained from documentation and observation only (see Section 6.4).

Figure 2: Plaintext warning in the Aegis Authenticator app.

5M+ users. Plaintext cloud syncing was also the only backup
mechanism supported by the SAASPASS app; if enabled, it
backed up the TOTP fields in plaintext via the XMPP protocol.
Though the feature was optional and off by default, SAASPASS
regularly prompted the user to enable it. Similarly, the 2FAS
app prompted users to enable remote backups to Google Drive,
which were in plaintext by default. The app did support an
additional option to encrypt remote backups, but a UX flaw
still leaked plaintext in some cases (see Section 5.3.4).

Of the 12 apps that supported plaintext backups, only 4
provided a warning to users that exporting plaintext TOTP
backups is risky. 2FAS, Authenticator Pro, andOTP, and Aegis
Authenticator (see Figure 2) each displayed a warning and

required the user to verify their intent to export plaintext by
clicking a checkbox, toggle, or confirmation button. Authenti-
cator Pro displayed a detailed security warning before export-
ing plaintext to file, but also supported a feature that allowed
the user to copy/paste a plaintext backup to the clipboard with
no warning.

5.3 Remote Backups with Encryption

More than half (15) of the apps we analyzed, comprising over
74 million installs, supported encrypted backups of TOTP
data. However, the implementations of many of these apps
introduced a range of vulnerabilities, up to and including
giving the backup service the ability to decrypt the backup.

All of these apps implemented a similar architecture, in
which they encrypted all or part of the TOTP backup using
a symmetric encryption key and uploaded/exported the re-
sulting ciphertext to a storage location, such as a third-party
cloud service, Google Drive, or user-selected local and remote
locations (see Table 1). We discuss the security and privacy
impacts of the storage location in Sections 5.5 and 6.1.

All except one of the 15 apps derived the encryption key
from a user-provided password. If an attacker obtains the
backup, then they can try to crack the ciphertext just like
they would a password hash. The feasibility of such offline
attacks relies primarily on the strength of the password itself
(discussed in Section 5.3.1) and secondarily on the KDF al-
gorithm and how it is configured (discussed in Section 5.3.2).

Microsoft Authenticator was the only app that did not de-
rive keys from user-provided passwords. Instead, it obtained

https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://play.google.com/store/apps/details?id=com.azure.authenticator
https://play.google.com/store/apps/details?id=com.duosecurity.duomobile
https://play.google.com/store/apps/details?id=com.authy.authy
https://play.google.com/store/apps/details?id=com.elevenpaths.android.latch
https://play.google.com/store/apps/details?id=com.lastpass.authenticator
https://play.google.com/store/apps/details?id=com.twofasapp
https://play.google.com/store/apps/details?id=ru.yandex.key
https://play.google.com/store/apps/details?id=org.fedorahosted.freeotp
https://play.google.com/store/apps/details?id=com.pixplicity.auth
https://play.google.com/store/apps/details?id=com.salesforce.authenticator
https://play.google.com/store/apps/details?id=net.codemonkey.otpgeneratorapp
https://play.google.com/store/apps/details?id=com.authenticator.authservice2
https://play.google.com/store/apps/details?id=com.beemdevelopment.aegis
https://play.google.com/store/apps/details?id=com.auth0.guardian
https://play.google.com/store/apps/details?id=authentic.your.app.authenticator
https://play.google.com/store/apps/details?id=org.shadowice.flocke.andotp
https://play.google.com/store/apps/details?id=com.zoho.accounts.oneauth
https://play.google.com/store/apps/details?id=me.jmh.authenticatorpro
https://play.google.com/store/apps/details?id=com.solidpass.saaspass
https://play.google.com/store/apps/details?id=authentic.password.authenticator.pro
https://play.google.com/store/apps/details?id=authenticator.mobile.authenticator


randomly-generated AES-256 keys from a Microsoft key ser-
vice. Using random keys is cryptographically ideal, but it
introduces a significant key management challenge, which we
discuss in Section 5.3.3.

The following subsections detail the data in Tables 2 and 3.

5.3.1 Password Policies

Most apps that derived encryption keys from user-provided
passwords had severely inadequate password policies, mak-
ing the encrypted backups vulnerable to trivial guessing
techniques implemented in modern password cracking tools
(RQ3). It is well established that people typically create
weaker passwords on mobile devices [49, 75]. Best practices,
such as rejecting weak passwords and nudging users to create
stronger passwords, help to mitigate this risk.

The most important aspect of a password policy is the min-
imum length [38], but most apps accept incredibly short pass-
words; several apps even accept just a single character (see Ta-
ble 3). A few apps did employ various levels of block lists. For
example, Duo Mobile rejected known weak passwords and
Latch used HaveIBeenPwned17 to display a warning when the
password was included in previous data breaches. It seems
likely that many users would consider TOTP backups im-
portant, which suggests that password strength meters could
nudge them to select stronger passwords [27, 74]; the only
app to implement a strength meter was Aegis.

By default, Auth0 Guardian suggested a random password
of length 10, but allowed a user to enter their own password
instead. Similarly, Authenticator and App Authenticator could
optionally suggest a password composed of 4 words selected
from a list of 6,566 words (1015 permutations). Sadly, these
apps also used a static salt, which largely negates any benefits
of suggesting passwords (see Section 5.3.2).

5.3.2 KDFs and their Configurations

Most apps that we analyzed used a key derivation function
(KDF) and/or KDF configuration that was wildly inadequate
to meaningfully frustrate offline attackers (RQ3).

Among the apps that derive keys from passwords, Zoho
OneAuth and TOTP Authenticator were at the highest risk
to trivial offline attacks because they used a single round of
SHA-256 as a KDF. SHA-256 is a prevalent cryptographic
hash function that has been widely and heavily optimized to
execute quickly in modern hardware. However, fast execution
is the antithesis of the design goals for KDFs, which aim to
execute slowly. SHA-256 is not a KDF and, therefore, should
never be used alone for key derivation.

Authenticator and App Authenticator utilized the KDF de-
fined in PKCS#12 [51], which is not appropriately hardened
to mitigate offline attacks on modern hardware and has been
deprecated in favor of PBKDF2 [50].

17https://haveibeenpwned.com/

PBKDF2 [50] was the most commonly used KDF (n = 7)
among the apps we analyzed. Internally, PBKDF2 computes
a Hash-based Message Authentication Code (HMAC) using
a given cryptographic hash function. Of the 7 apps that used
PBKDF2, 4 used SHA-1 and 3 used SHA-256. Most KDF
configuration recommendations are made in the context of se-
cure password storage, but they still serve as a useful reference
point for key derivation. NIST [38] states that PBKDF2 itera-
tions should be as many “as verification server performance
will allow,” but at least 10,000. While all of the apps that we
looked at do 10,000 iterations or more, many argue this value
is too low for modern usage. OWASP [7] highlights that val-
ues should take into account the underlying hash function and
recommends 720,000 iterations for PBKDF2-HMAC-SHA1
and 310,000 iterations for PBKDF2-HMAC-SHA256. The
highest PBKDF2 iteration count among apps we analyzed
was only ~100,000 (in andOTP and LastPass Authenticator).

Only 3 apps used modern memory-hard KDFs. While
PBKDF2 is only CPU-hardened, modern KDFs are designed
to also be memory-hardened, which significantly increases
the cost of execution. Yandex.Key and Aegis Authenticator
both used scrypt [55], while Duo Mobile used argon2i [15].
Duo Mobile used the libsodium library, which chooses differ-
ent KDFs, configs, and algorithms depending on the available
resources. The configuration for all of these apps exceeds
the OWASP recommendations [7] for password storage. In
Section 6.2, we argue that the backup mechanisms in TOTP
apps should configure KDFs to run significantly more slowly.

While the vast majority of apps that we analyzed correctly
utilized random salts when deriving keys from passwords,
Authenticator and App Authenticator both used the hard-
coded salt value “ROYALEWITHCHEESEROYALEWITH-
CHEESE”, which makes the TOTP backups generated by
these apps vulnerable to rainbow table attacks [69]. Given the
uniqueness of this value, we believe that App Authenticator
is an unauthorized repackaged clone, since it is littered with
ads while Authenticator is not.

5.3.3 Key Management

The encrypted TOTP backups created by several apps could
be decrypted by the remote service storing the backup (RQ3).
The security of a cryptographic architecture relies not only
on how an encryption key is generated, but how that key is
handled and stored. Several apps sent both the ciphertext and
the encryption key (or password from which it was derived)
to the same entity, allowing it to decrypt the TOTP backup.

Microsoft had the technical capability to decrypt the TOTP
backups created by Microsoft Authenticator because it had
access to both the encrypted TOTP backup and the associated
key. As mentioned previously, Microsoft Authenticator ob-
tained randomly-generated keys from a Microsoft key service
instead of deriving keys from passwords. However, the app
also stored the encrypted TOTP backup on a Microsoft con-

https://haveibeenpwned.com/


PII to use cloud backups TOTP Data LeakedAbbreviated Name Encrypted? phone email name dob photo Backup Location secret label issuer
Obtain Backup
With...

Microsoft Authenticator Yes* Y Y Y Y - activity.windows.com Y Y Y Microsoft account
Duo Mobile Yes - Y Y - Y www.googleapis.com - Y^ Y^ Google account
Twilio Authy Yes Y Y - - - api.authy.com - Y Y SMS only
Latch No - Y - - - latch.elevenpaths.com Y Y Y Latch account
LastPass Authenticator (Yes) - Y - - - (lastpass servers) (Y) (Y) (Y) Lastpass account

No - Y Y - Y www.googleapis.com Y Y Y Google account2FAS Yes* - Y Y - Y www.googleapis.com Y^ Y^ Y^ Google account
Yandex.Key Yes* Y - - - - registrator.mobile.yandex.net Y Y Y SMS only
Salesforce Authenticator Yes* Y - - - - authenticator-api.salesforce.com Y Y Y SMS only
TOTP Authenticator Yes* - Y Y - Y www.googleapis.com Y Y Y Google account
Zoho OneAuth Yes* - Y - - - accounts.zoho.com Y Y Y Zoho account
SAASPASS No Y - - - - 104.154.49.147 Y Y Y SMS only

Table 2: Overview of the backup mechanisms that automatically sync data to the cloud. Yes* indicates a serious security flaw in
the implementation and/or usage of cryptography (see Section 5.3). Y^ indicates the field is conditionally included in the backup
as plaintext (see Section 5.5). Values in parentheses were obtained from documentation and observation only (see Section 6.4).

trolled storage service. This behavior is clearly documented in
a Microsoft blog post [76]. Microsoft engineers also acknowl-
edged this design on Twitter,18 but stated that the company
implemented internal security procedures to reduce the risk
of attack.19 On the iOS version of the Microsoft Authenticator
app, the ciphertext is stored in the user’s iCloud, removing
Microsoft’s technical capability to decrypt the TOTP backup
since it only has access to the key [76]. It seems that the An-
droid app could achieve a split-knowledge architecture like
the iOS app by leveraging the Android Auto Backup system,
or Google Drive directly, to store encrypted backups.

Several apps that derive keys from passwords also ran into
the same vulnerability, but in less transparent ways. Each
of Yandex.Key, Zoho OneAuth, and Salesforce Authenticator
sent the backup password and the encrypted backup to do-
mains controlled by each of those apps’ developers, giving
them the technical capability to decrypt the backups. The
Yandex.Key app used Yandex servers to perform a password
strength test, which should happen locally on the device in-
stead. In its documentation, Zoho OneAuth states that “The
reason for [encrypting backups] is to make sure that your
OTP secrets are stored securely and not accessed by anyone
(including Zoho). You should note that only the encrypted
secrets will be stored by Zoho and not the passphrase” (bold
theirs) [81]. It is unclear whether the bold text is meant to dis-
close that the password is sent to Zoho servers, but it certainly
does not explain why it is transmitted. Regardless, there is no
way for users to verify that Zoho does not, in fact, store the
passphrase on the server. The Zoho OneAuth backup imple-
mentation seems to flagrantly violate the confidentiality goals
defined in the documentation because Zoho has the technical
capability to decrypt the TOTP backups. Salesforce Authenti-
cator sent the password to Salesforce servers so that it could
be used “to verify [users’] ownership of the backed-up ac-

18https://web.archive.org/web/20221003155439/https://twit
ter.com/Alex_T_Weinert/status/1195841144304758786

19https://web.archive.org/web/20221003155253/https://twit
ter.com/Alex_T_Weinert/status/1195841594814976000

counts” [65] during recovery. Since Salesforce Authenticator
also required an SMS OTP during authentication, the short
recovery PIN does not provide enough additional security to
warrant allowing Salesforce to decrypt the TOTP backup.

The TOTP Authenticator app suffers from a different key
management issue: hard-coded keys. Backups uploaded to
Google Drive are encrypted using a key derived from a static,
hard-coded password, which is equivalent to hard-coding the
key directly in the app source code. Anyone who decompiles
the app can obtain the key, granting attackers with access to
the backup the ability to instantly decrypt it. Surprisingly, the
app does derive a key from a user provided password when
encrypting TOTP backups exported to a file. The app should
leverage the same behavior when backing up to Google Drive.

5.3.4 How TOTP Backups are Encrypted

Of the 15 apps using encrypted backups, 5 used modern Au-
thenticated Encryption with Associated Data (AEAD) primi-
tives, while others used deterministic encryption (AES-ECB)
and many did not provide integrity over the ciphertext (RQ3).

AEADs As seen in Table 3, 5 apps secured backups with
an AEAD, primitives that encrypt and authenticate mes-
sages in one atomic API call, thus reducing the chance
of developer error compared to employing encryption and
Message Authentication Code (MAC) primitives individ-
ually. Xsalsa20_Poly1305 was used by 2 apps (via the
libsodium [14] secret_box API), while 3 others used AES-
GCM. Next, we discuss the 8 apps20 that used AES modes of
operation that only provide confidentiality.

AES-CBC Of the 5 apps that use AES-CBC, 4 correctly
generated a random initialization vector (IV), but the TOTP
Authenticator app used an IV of all zeros. This flaw allows
attackers to determine whether multiple backups start with the
same plaintext blocks, but the real world impact is arguably
immaterial. As mentioned in Section 5.3.2, this app uses a

20Some apps used AES with unknown modes of operation (see Table 3).

https://web.archive.org/web/20221003155439/https://twitter.com/Alex_T_Weinert/status/1195841144304758786
https://web.archive.org/web/20221003155439/https://twitter.com/Alex_T_Weinert/status/1195841144304758786
https://web.archive.org/web/20221003155253/https://twitter.com/Alex_T_Weinert/status/1195841594814976000
https://web.archive.org/web/20221003155253/https://twitter.com/Alex_T_Weinert/status/1195841594814976000


Abbreviated Name Key Source Password
Min Len KDF and Configuration KDF Salt Encryption

Algorithm
Ciphertext
Integrity

Decryption
Heuristic

Microsoft Authenticator Random* n/a n/a n/a AES-128-CBC HMAC-SHA256 n/a

Zoho OneAuth Password* 3
SHA-256
i = 1 none AES-256-ECB none Base32

Salesforce Authenticator Password* 4
PBKDF2-HMAC-SHA256
i = 10,000 random AES-256-CBC none JSON

Yandex.Key Password* 6
scrypt
N = 2^15, r = 20, p = 1 random Xsalsa20_Poly1305 AEAD n/a

TOTP Authenticator Password 8
SHA-256
i = 1 none AES-256-CBC none JSON

Authenticator Password 10
PKCS12-SHA256
i = 65,536 hard coded AES-256-ECB none URI

App Authenticator Password 10
PKCS12-SHA256
i = 65,536 hard coded AES-256-ECB none URI

Auth0 Guardian Password 1
(PBKDF2-HMAC-SHA1)
(i = 10,000) (random) (AES-256) (HMAC) (n/a)

Authenticator Pro Password 1
PBKDF2-HMAC-SHA1
i = 64,000 random AES-256-CBC none JSON

2FAS
Password
OpenPGP 1

PBKDF2-HMAC-SHA256
i = 10,000 random AES-256-GCM AEAD n/a

Aegis Authenticator Password 2
scrypt
N = 2^15, r = 8, p = 1 random AES-256-GCM AEAD n/a

andOTP Password 4
PBKDF2-HMAC-SHA1
i = [140,000 - 160,000] random AES-256-GCM AEAD n/a

Twilio Authy Password 6
PBKDF2-HMAC-SHA1
i = 10,000 random AES-256-CBC none Base32

Duo Mobile Password 10
argon2i
m = 128 Mb, t = 6, p = 1 random Xsalsa20_Poly1305 AEAD n/a

LastPass Authenticator Password 12
(PBKDF2-HMAC-SHA256)
(i = 100,100) (random) (AES-256) (HMAC) (n/a)

Table 3: Cryptographic details of app backup mechanisms. The asterisk (*) indicates that the app leaks the encryption key and/or
password to the same service which stores the ciphertext, allowing that service to decrypt the TOTP backup (see Section 5.3.3).
Square brackets indicate the min and max of a range, inclusive. Values in parentheses were obtained from documentation and
observation only (see Section 6.4). The abbreviations for KDF configurations are: SHA/PKCS12/PBKDF2 (i = iterations), scrypt
(N= CPU/memory cost, r = block size, p = parallelism), and Argon2 (m = memory, t = time/iterations, p = parallelism).

seriously flawed process to derive keys from user-provided
passwords. Attackers will undoubtedly crack the password
(and thus the key) directly, rather than analyze the ciphertext.

As mentioned in Section 5.2, the 2FAS app does allow users
to enable a feature that automatically encrypts and uploads
TOTP backups to the user’s Google Drive. However, the app
did not allow the user to enter a backup password before
enabling the Google Drive backup mechanism, which resulted
in existing TOTP data being uploaded to Google Drive in
plaintext. Once a password was provided, all existing and
future TOTP accounts were encrypted with AES-CBC using
a random IV before they were backed up to Google Drive.

AES-ECB Alarmingly, 3 of the apps encrypted TOTP back-
ups using AES-ECB, which is deterministic and does not
provide indistinguishability under chosen plaintext attack
(IND-CPA), commonly referred to as semantic security. Iron-
ically, the use of AES-ECB in these particular apps is basi-
cally immaterial because they each have other serious security
flaws that allow trivial decryption of the TOTP backups. Zoho
OneAuth uses AES-ECB, but Zoho servers already have the
technical capability to decrypt backups (see Section 5.3.3).

The Authenticator and App Authenticator apps also use AES-
ECB, but backups in these apps are already vulnerable to rain-
bow table attacks (see Section 5.3.2). Similar to the misuse
of IVs in AES-CBC mode discussed previously, attackers are
most likely to attack the backup passwords directly than hunt
for clues in the ciphertext output by AES-ECB. Still, these
apps should abandon AES-ECB and use an AEAD instead.

Integrity Microsoft Authenticator was the only app not to
use an AEAD for encryption, while providing integrity over
the ciphertext (using HMAC-SHA256). All other apps that
used AES-CBC and AES-ECB had no cryptographic mech-
anism to authenticate the ciphertext before performing de-
cryption. Instead, these 7 apps relied on a range of heuristics
to determine whether the decryption succeeded. Checking
whether the decrypted plaintext was a valid JSON object or
URI were common techniques used by 5 apps. Interestingly,
the Twilio Authy and Zoho OneAuth apps only encrypted the
Base32 encoding of the TOTP secret. The random secret
would normally prevent identifying whether the correct de-
cryption key was used, but the Base32 encoding provides a
reliable heuristic (see Appendix A). Offline attackers can use



the same heuristic, so not including a MAC for CBC or ECB
mode does not enhance security and seems to be an oversight.

Asymmetric Encryption andOTP was the only app that
supported backups with asymmetric encryption. The app
could send the plaintext backup to a third party app,21 which
encrypted the data using a PGP key and returned the resulting
ciphertext. There is a clear risk of compromise when sending
data to a third-party app. To reduce the attack surface, PGP
functionality should be implemented directly within the app
using trusted libraries.

5.4 Android Auto Backup
Android 6.0 and above supports a backup system that automat-
ically uploads an app’s data to the user’s Google Drive [12].
Android apps are opted into Android Auto Backup (AAB)
by default, but developers can explicitly opt-out by setting
android:allowBackup="false" in the app’s manifest file.
The official docs suggest that developers opt-out “...if [the]
app deals with sensitive information that Android shouldn’t
back up.” [12] We argue that TOTP fields, especially the
secret, are sensitive and should not be backed up via AAB
without additional protections.

The AAB documentation [12] states that backup data up-
loaded to Google Drive is “...end-to-end encrypted on de-
vices running Android 9 or higher using the device’s pin,
pattern, or password.” We did not review the Android source
code to verify implementation details, but it is apparent that
encryption is used to protect app data. The use of end-to-
end encryption is important to protect the backups at rest in
Google’s data centers from internal attackers, but the device’s
pin/pattern/password is likely to be low entropy and may not
provide any meaningful protection against offline attacks.

Just over half (12) of the apps in our dataset explicitly opt
out of AAB. We manually triggered the AAB functionality for
each of the 10 apps that supported it and observed which data,
if any, was restored after uninstalling and reinstalling the app.
We could not get AAB to run without error for 3 apps that
supported it.22 While we could not observe the behavior for
these apps, we included them in our analysis because AAB
may work on Android versions that we did not test. Google
Authenticator did support AAB, but did not backup any of the
TOTP fields via this mechanism; it only backed up application
settings, such as Dark Mode preferences.

Each of the remaining 6 apps whose AAB behavior we
could observe backed up all of the TOTP fields (secret, issuer,
and label) via AAB. The user’s Google account was a single
point of failure for users of the 5 apps that relied solely on the
security protections native to AAB. An attacker with access to
the Google account could read the TOTP backup and generate
valid OTPs for the user’s accounts.

21https://play.google.com/store/apps/details?id=org.suff
icientlysecure.keychain

22Aegis Authenticator, andOTP, and FreeOTP Authenticator

The Auth0 Guardian app was the only app whose AAB
behavior we could observe that added additional protections
before the TOTP backups were sent to Google Drive via AAB.
The app required the user to enter a backup password, which
was used to enable the native encryption support in the Realm
database [2] that the app used to store TOTP data and other
app settings (see Table 3). We believe that the entire encrypted
Realm database was backed up via AAB because the Auth0
app also required the backup password upon recovery.

It is also worth noting that even though we could not ob-
serve their AAB behavior, andOTP and Aegis Authenticator
were the only apps that allowed the user to opt in/out of using
AAB. Both apps required a backup password if AAB was
enabled, which, we believe, would be used to derive a key and
encrypt the TOTP backup before sending it to Google Drive.

5.5 Privacy Implications

This section explains how the backup mechanisms in TOTP
apps can leak personal user information to third parties (RQ1).

PII to Use App Only 2 apps required users to provide per-
sonal information to the app developer in order to use the app
at all, even if the backup mechanism was not enabled. Twilio
Authy required the user to enter an email address and prove
control of a phone number via SMS OTP or voice call. Latch
required the user to create an account in order to use the app,
which required an email address.

PII to Enable Backups Apps that supported local file ex-
ports and sharing did not request any personally identifiable
information (PII) to use those features, but the use of plaintext
exports (see Section 5.2) can have an obvious impact on users’
privacy depending where they are sent and stored.

The ability to automatically sync backups to the cloud
universally required users to divulge at least some PII so that
they could be authenticated during recovery (see Table 2).

Of the 11 apps that supported a cloud sync backup mecha-
nism, 8 required the user’s email address and 5 required the
user’s phone number to utilize this feature. The Microsoft Au-
thenticator app required a Microsoft account to enable cloud
sync, which required the most PII of any app that we analyzed:
phone number, email address, name, and date of birth. Zoho
OneAuth also required account creation for cloud sync and
collected user email address, country, and state.

The 3 apps that automatically sync backups to the user’s
Google Drive (i.e., separately from the aforementioned apps
using AAB) used OAuth/OpenID to perform this upload on
the user’s behalf. Doing so granted each of those apps permis-
sion to read the user’s primary email address, name, and ac-
count photo. Though not technically required for the backup
functionality to work, the user’s name and account photo
fields are included in the narrowest set of permissions that
developers can request.

https://play.google.com/store/apps/details?id=org.sufficientlysecure.keychain
https://play.google.com/store/apps/details?id=org.sufficientlysecure.keychain


Leaking TOTP Labels and Issuers Section 5.3 discussed
app developers who have the technical capability to decrypt
TOTP backups and read their content, including secret, is-
suer, and label. Here, we discuss TOTP data that is leaked
directly to third parties in plaintext. Several apps that sup-
ported encrypted cloud sync only encrypted the TOTP secret
and included all other TOTP fields in backups as plaintext.

Interestingly, Duo Mobile conditionally includes either
the TOTP issuer or TOTP label in plaintext depending on
whether the website/service is on an internal list of popular
websites/services. If the website/service is a member of the
list, then the TOTP issuer is included in plaintext, while the
TOTP label is included in plaintext if the website/service is
“custom” (i.e., not on the list). Both Zoho OneAuth and Twilio
Authy only encrypted the secret, which meant the issuer and
label are sent to the Zoho and Twilio servers in plaintext.

Functionally, there is no reason to avoid encrypting the
TOTP issuer and label fields in the TOTP backups and it is
not immediately obvious how this decision improves the user
experience. These plaintext fields appear to have no impact
whatsoever on the UX of the Zoho OneAuth app; no TOTP
data is displayed during recovery unless the correct backup
password is entered. In the Duo Mobile and Twilio Authy
apps, however, the TOTP issuer and label are displayed in
the app even if the backup password is not entered at all, or
is incorrect. At best, one could learn which accounts they
may be locked out of if they cannot recall their backup pass-
word. While backups generated by Duo Mobile are stored
on Google Drive, the Twilio Authy app and Zoho OneAuth
app each store backups on their own servers. This means that
any user of Twilio Authy or Zoho OneAuth who enables cloud
backups is unknowingly sending those companies the names
of the websites/services they use and the usernames for their
accounts on those platforms.

5.6 Reliance on Passwords, SMS, and Email

Of the 19 apps that supported automatically uploading TOTP
backups to the cloud (via cloud sync features and/or AAB), 15
required the user to authenticate to the cloud service storing
the backup, while 4 relied solely on SMS OTP to authenticate
users during recovery (see Tables 1 and 2) (RQ2).

The SAASPASS app supported a dangerous combination of
uploading plaintext TOTP backups to the cloud and relying
solely on SMS OTP to authenticate users during recovery.
Any attacker who leverages any of the well-known and nu-
merous techniques to hijack the user’s phone number will
gain immediate access to the full TOTP backup, including the
TOTP secrets. The app does allow users to optionally enforce
a 20-hour delay on sending the recovery OTP via SMS, which
can give the user critical time to switch to a different TOTP
app while rotating their TOTP secrets and/or regain control
of their phone number. It is unclear how many users discover
this option in the security menu and enable it in practice.

By default, each of Twilio Authy, Yandex.Key, and Sales-
force Authenticator also relied solely on SMS OTP to authen-
ticate users during recovery, but did encrypt TOTP backups
using a key derived from a password before uploading them to
the cloud. To compromise the backup, an attacker who hijacks
the phone number will still need to conduct an offline attack
to guess the backup password. Presumably, many users will
realize that their phone number has been compromised once
their phone stops working [20] and take action. Thus begins
a race. In addition to regaining control of their phone number,
the user should begin rotating their secrets on each individual
account protected by TOTP. The question is whether they can
rotate everything before the attacker successfully cracks the
TOTP backup, enabling them to generate valid OTPs and at-
tempt to log into their accounts. If the backup password could
be cracked quickly, then chances are high that it was relatively
weak, which is unsurprising considering the password policy
issues discussed in Section 5.3.1. Given the fact that password
reuse is rampant [10], it seems likely that the user may also
have weak account passwords, which may allow the attacker
who hijacked the user’s phone number to fully compromise
their online accounts protected by TOTP 2FA.

The remaining 15 apps that supported remote cloud back-
ups required the user to log into to an account on the cloud
service to obtain the TOTP backup. This begs the question:
What are the authentication mechanisms for those accounts?

To use the Latch app at all, we were required to create an
account on the Latch website, which only required a username
and password. There were no indications of any support for
2FA. During recovery, the backup could be obtained with only
the username and password.

Cloud backups on Microsoft Authenticator required cre-
ating a Microsoft account. In addition to a username and
password, creating this account required proving control of a
phone number and providing an email address. To obtain the
backup during recovery, we were required to prove control of
the phone number again (i.e., SMS 2FA).

LastPass Authenticator actually relied on the LastPass Pass-
word Manager app, developed by the same company, to en-
crypt and store TOTP backups. The password manager is free
to use, but requires creating an account by providing an email
and password. The LastPass Authenticator app then requires
that at least one 2FA option is enabled on the password man-
ager account. However, the only 2FA options freely available
on LastPass accounts that did not rely on possession of a
device was printable recovery codes. Of course, if the user
enables TOTP 2FA or Push 2FA and only has a single device,
then they will not be able to log into their LastPass account
in the event that they lose their phone.

A Zoho account was required to enable cloud backups in
Zoho OneAuth, which required an email and password. Zoho
does support multiple methods of 2FA [4], including SMS
2FA, but none were required.

As mentioned previously, the user’s Google account is com-



monly used to store remote backups; apps upload TOTP back-
ups to Google Drive directly, or via Android Auto Backup.
In an effort to combat low adoption rates and increase the
security of accounts, Google announced in 2021 that it would
begin requiring hundreds of millions of users to enable 2FA on
their accounts [48]. Arguably, this decision reflects a larger,
industry-wide paradigm shift [11] and unquestionably im-
proves the overall security posture of account security. How-
ever, at the time of our analysis, the workflow to enable 2FA
on a Google account required users to initially choose one of
three specific methods: Push 2FA, SMS 2FA, or a security key.
Google does support enabling several additional 2FA meth-
ods after initial setup [1], but it seems almost certain that the
vast majority of users will stick with either SMS 2FA or Push
2FA given the general lack of knowledge about 2FA and its
security benefits [22, 41, 62], low organic adoption rates [36],
that adoption of security keys is quite rare among the general
population [9], and that these alternative 2FA methods are
completely optional. If SMS 2FA is enabled, then the Google
account is protected by the same exact technologies that users
of TOTP are likely trying to avoid: passwords and SMS. If
Push 2FA is enabled, then the user could face account lockout
across all of their online accounts protected by TOTP 2FA if
their device is inaccessible; they will be unable to generate
OTPs because the device on which the TOTP secrets were
stored is lost and, at the same time, they will be unable to
recover those TOTP secrets because they were backed up to
their Google account, which requires them to approve a noti-
fication sent to the lost device to log in. Registering multiple
personal devices for Push 2FA can help recovery if only a
single device is lost, but many users only have a single device.

For cloud-based backup mechanisms, this account recov-
ery conundrum inevitably reduces the security of the TOTP
2FA scheme to just another layer of the same authentica-
tion mechanisms that TOTP 2FA is meant to supersede: user-
name/password, SMS, and/or email (RQ2).

6 Discussion

In this section, we discuss the dangers of plaintext backups,
make recommendations, describe our responsible disclosure,
and discuss the limitations of this study.

6.1 The Dangers of Plaintext Backups

The dangers of plaintext backups are largely self-evident, but
warrant some unpacking to gauge the real-world risk.

Universally among the apps we analyzed, an attacker with
access to the plaintext TOTP secret also learned the names of
the websites/services on which the user had accounts and/or
the usernames for those accounts, allowing them to leverage
classic password attacks. Plaintext TOTP backups grossly
undermine the security benefits of TOTP 2FA.

The majority of apps that support plaintext backups do
so via file export or sharing. File exports from a TOTP app
will not help a user recover if the export is stored locally on
the lost device. Sending plaintext backups remotely can leak
the TOTP data to every actor involved in transporting and
storing the backup. For example, if a user sends the plaintext
file via email, then it is stored in the sender’s outbox and the
recipient’s inbox. Some users may understand these risks and
choose a secure alternative, such as sending the backup to
another personal device via an end-to-end encrypted chat app,
such as Signal.23 However, we expect that many users will not
grasp the sensitivity of plaintext backups since so few apps
warned users about the associated risks (see Section 5.2).

One use case in which plaintext exports are particularly
useful is migration between apps. Many apps supported im-
porting the plaintext backups from other TOTP apps. As long
as the plaintext export is deleted after the local migration is
complete, there should be little to no risk of compromise.

Google Drive is a common storage location for TOTP back-
ups; many apps store backups there via Android Auto Backup,
several apps upload there directly using SDKs, and many An-
droid users will likely choose it as a storage location via the
sharing menu. Storing plaintext TOTP backups in Google
Drive simply outsources responsibility for securing them to
Google. Many users may, in fact, have a threat model in which
this is a perfectly reasonable backup solution given Google’s
existing security mechanisms. Google Drive is also operated
by a separate company than all of the apps that use it for stor-
age, potentially allowing the TOTP backups to hide among
the masses. We argue that these assumptions do not hold for
Latch and SAASPASS because their employees know that their
servers are storing plaintext TOTP backups, which increases
the risk of internal attacks. The security of remotely-stored
plaintext backups against external attackers is directly de-
pendent on the authentication mechanisms protecting that
account. An attacker who compromises a user’s Latch or
Google accounts can simply install the relevant TOTP app to
automatically restore all of the user’s TOTP secrets.

6.2 Recommendations
According to the Google Play Store, the TOTP apps that we
analyzed have a collective install count of over 180 million
(see Table 1). The following recommendations will help app
developers improve their backup and recovery mechanisms
to address security vulnerabilities and respect user privacy.

Apps should consider not supporting plaintext backups. If
they are supported, then users should be clearly warned about
the associated risks.

Including any TOTP fields in backups as plaintext violates
user privacy. Apps should encrypt all TOTP fields, including
the secret, issuer, and label. Apps that rely on remote key
servers to generate/store random keys should choose different

23https://signal.org/

https://signal.org/


entities for storage of keys and ciphertext; if both are stored
with a single entity, then they can decrypt the TOTP backups.

We have several recommendations for apps that derive
keys from passwords. First, they should implement well-
established best practices to encourage users to create strong
passwords (see Section 5.3.1). Second, NEVER allow the
backup password to leave the app. Once the key is derived
from the password, the password should be wiped from mem-
ory and the key should be securely stored on the device using
the Android Key Store 24 so that it can be used to encrypt
TOTP accounts added in the future.

Finally, we recommend that TOTP apps that derive keys
from passwords should capitalize on the fact that the KDF
operation happens so infrequently and configure it to run sig-
nificantly slower than existing recommendations for password
storage. In contrast to account authentication and unlocking
password managers, which can easily happen many times per
day, TOTP apps should only ever perform key derivation two
times: when the user first enables the backup mechanism, and
when the user is attempting to recover. In fact, this is the exact
architecture that several apps already implement (e.g., Duo
Mobile). The original scrypt paper [55] asserted that 5 sec-
onds is a reasonable amount of time to wait for file encryption.
While that value is subjective, Egelman et al. [26] did find
that people are willing to endure longer delays in security
contexts when they are informed of the threat model and how
the delay enhances their security. Given that TOTP apps al-
ready show a 30 second countdown25 indicating when the
OTP will be regenerated, we propose that TOTP apps should
reuse this familiar UX and dynamically calculate the KDF
configuration such that it takes 30 seconds to execute. While
the KDF executes, the visual countdown should be displayed
along with an explanation of how the delay increases defense
against offline attacks and that it will only occur again dur-
ing recovery. It is likely that the willingness of users to wait
has an upper bound regardless of explanation. We believe 30
seconds is a reasonable starting point, but future work should
explore this limit empirically.

TOTP apps that derive keys from passwords should adopt
the Argon2 KDF because it allows developers to indepen-
dently configure memory and CPU parameters. As a result, all
devices should be able to extrapolate from a small set of tests
a KDF configuration that should execute within the desired
clock time. Encouragingly, the andOTP app did dynamically
calculate the number of rounds of PBKDF2 required to keep
the clock time within 1 second, but only used this technique
when encrypting the TOTP backup in Android Auto Backup
(see Section 5.4) and not when backing up to Google Drive.
Higher end devices could consider the historical trends in
device specs (e.g., the median amount of memory of phones
sold within the last 2 years) to ensure that recovery can run

24https://developer.android.com/training/articles/keystore
25While most TOTP apps are capable of using any time window defined

by the server, 30 seconds is almost universally used in practice.

without error on lower end devices, even if it takes longer than
30 seconds. For example, a user who loses their brand new
phone would reasonably expect to be able to recover on an
older device running the same TOTP app.

6.3 Responsible Disclosure

Here, we outline our best efforts to disclose substantive issues
to the respective app developers and summarize the responses
we received as of November 4, 202226. We felt there was noth-
ing to disclose for the following 6 apps: Google Authenticator,
LastPass Authenticator, FreeOTP Authenticator, Authentica-
tor Pro, Aegis Authenticator, and Auth0 Guardian. The de-
veloper of andOTP announced its deprecation [52] after our
analysis, so no report was filed. TOTP Authenticator did not
respond to our email and Twitter communications asking for
a security contact, so no report was filed. We contacted each
of the remaining 14 app developers and gave them at least 90
days to respond to our report.

The issues in the Twilio Authy app that we disclosed to
Twilio in 2020 [35] (v24.3.1) persisted in the app over 2 years
later (v24.8.5). Twilio stated in October 2022 that they are
“committing to increase the length of the Backup password”
and “significantly increasing the number of [PBKDF2] iter-
ations.” In response to our disclosure that the Authy backup
mechanism sends the TOTP issuer (i.e., website/service name)
and label (i.e., the account username) to Twilio servers in
plaintext, Twilio stated that users are able to set the issuer
field to any custom value and that these fields are required
“...as an aid to help the users to know what tokens they en-
crypted in multi-device scenarios.” We find it extremely un-
likely that many users change the default value of the TOTP
issuer, which is almost universally set as their username by
the website on which they are enabling TOTP, and wanted to
know the percentage of users who take this action in practice.
However, Twilio claimed that they do not track changes to
the TOTP issuer field. Twilio stated that they are considering
updates to their privacy policy. Twilio uses BugCrowd, but
we chose not to disclose via that platform because “Twilio
does not permit public disclosure at this point in time.”27

Latch did not rule out our suggestion of allowing users
to opt in/out of TOTP backups, but rejected our strong rec-
ommendation to implement end-to-end encryption, stating
that the current behavior of sending TOTP backups to Latch
servers in plaintext was “by design” and “intended.”

Microsoft confirmed the backup mechanism in their An-
droid app was “by design” and highlighted their internal secu-
rity mechanisms. They did not respond to our suggestion to
store ciphertext in Google Drive instead of a Microsoft stor-
age service, nor our inquiry about why a more robust backup
mechanism was implemented on the iOS version of the app.

26See Section 7 for supplemental material available online.
27https://bugcrowd.com/twilio

https://developer.android.com/training/articles/keystore


Duo confirmed our report and pointed us to the Duo Pri-
vacy Data Sheet [13], which they said listed Google as a
sub-processor and disclosed the collection of username/email.
Regarding their backup design, Duo stated, “[b]y allowing
users to see their accounts in a non-restored state, Duo’s goal
is to help facilitate them setting up their accounts with their
services (e.g. Amazon) more easily. They do not have to recall
every service they set up OTP accounts for on their own.”

Salesforce responded to our disclosure report by linking to
two support articles [65, 66] on backup and recovery. Each of
these articles stated “...your encrypted TOTP data is stored on
Salesforce servers... During backup and restore events, your
passcode is used to verify your ownership of the backed-up
accounts.” Neither the documentation nor the response from
Salesforce addressed the fact that Salesforce has the technical
capability to decrypt TOTP backups (see Section 5.3.3).

The developer of Authenticator was very receptive to our
disclosure and released an updated version of the app (v1.2.4)
that (1) switched from static to random salts; (2) switched
from AES-ECB to AES-CBC; (3) set minimum password
length to 20; and (4) warned of plaintext export risks.

The developer of Code Generator said they would up-
date the app when they had “...enough available time and
resources...” Communication with 2FAS ceased after a devel-
oper asked for our PGP key, which we provided.

At the time of publication, the remaining 6 app developers
to whom we disclosed our findings never replied. Discussions
are on-going with several companies.

6.4 Limitations

We focused on Android only, so future work should analyze
the behavior of TOTP 2FA apps on iOS. We expect that most
apps will exhibit the same behavior on both platforms, but
we know this is not the case for all apps (e.g., Microsoft
Authenticator discussed in Section 5.3.3).

As we discuss in Section 5.4, we could not get Android
Auto Backup to run without error for several apps.

We were unable to verify the cryptographic primitives used
by the LastPass Authenticator and Auth0 Guardian apps. The
LastPass Authenticator app actually relies on the LastPass
Password Manager app28 (developed by the same company)
to enable encrypted cloud sync for TOTP backups. We found
documentation that it derives keys from the master password
using 100,100 rounds of PBKDF2 with random salts, calcu-
lates an authentication hash, and encrypts data using AES-
256 [3, 6]. We observed in the decompiled code that Auth0
Guardian uses RealmDB to store application data, which has
native support for encrypting data using AES-256 for con-
fidentiality and an HMAC for integrity [2]. As appropriate,
the value for these two apps in Tables 1, 2, and 3 are clearly

28https://play.google.com/store/apps/details/?id=com.last
pass.lpandroid

marked as “from documentation and observation only” where
we were not able to verify the claims.

7 Supplementary Materials

We strove to make our work fully verifiable and reproducible.
To that end, there are numerous supplementary materials avail-
able online at https://allthingsauth.com/totp-apps.

Acknowledgments

This research received funding from the Center for Long-
Term Cybersecurity (CLTC) at UC Berkeley, NSF grant
CNS-1817249, and NSA contract H98230-18-D-0006. Spe-
cial thanks to Primal Wijesekera for guidance on the tooling
used to capture network traffic; Nathan Malkin for invaluable
feedback on early drafts of this paper; and Jason Chan for
help analyzing the Microsoft Authenticator app.

References

[1] 2FA Directory. https://web.archive.org/web/
20220605042155/https://2fa.directory/int/.
(Accessed on 06/05/2022). 1, 12

[2] Encrypt a Realm - Java SDK — MongoDB Realm. ht
tps://web.archive.org/web/20220525164833/h
ttps://www.mongodb.com/docs/realm/sdk/jav
a/advanced-guides/encryption/. (Accessed on
05/25/2022). 10, 14

[3] How to Use LastPass Password Manager. https://we
b.archive.org/web/20220606190625/https://ww
w.lastpass.com/how-lastpass-works. (Accessed
on 06/06/2022). 14

[4] Introduction to multi-factor authentication (MFA). ht
tps://web.archive.org/web/20220607231957/h
ttps://help.zoho.com/portal/en/kb/accounts/
multi-factor-authentication/articles/mfa-i
ntroduction. (Accessed on 06/07/2022). 11

[5] Key Uri Format. Available: https://github.com/g
oogle/google-authenticator/wiki/Key-Uri-Fo
rmat. [Online; accessed: 12-May-2020]. 2, 4, 5

[6] Our Zero-Knowledge Security Model. https://web.
archive.org/web/20220606190618/https://www.
lastpass.com/security/zero-knowledge-secur
ity. (Accessed on 06/06/2022). 14

[7] Password Storage - OWASP Cheat Sheet Series. https:
//web.archive.org/web/20220530233607/https:
//cheatsheetseries.owasp.org/cheatsheets/P
assword_Storage_Cheat_Sheet.html. (Accessed
on 05/30/2022). 7

https://play.google.com/store/apps/details/?id=com.lastpass.lpandroid
https://play.google.com/store/apps/details/?id=com.lastpass.lpandroid
https://allthingsauth.com/totp-apps
https://web.archive.org/web/20220605042155/https://2fa.directory/int/
https://web.archive.org/web/20220605042155/https://2fa.directory/int/
https://web.archive.org/web/20220525164833/https://www.mongodb.com/docs/realm/sdk/java/advanced-guides/encryption/
https://web.archive.org/web/20220525164833/https://www.mongodb.com/docs/realm/sdk/java/advanced-guides/encryption/
https://web.archive.org/web/20220525164833/https://www.mongodb.com/docs/realm/sdk/java/advanced-guides/encryption/
https://web.archive.org/web/20220525164833/https://www.mongodb.com/docs/realm/sdk/java/advanced-guides/encryption/
https://web.archive.org/web/20220606190625/https://www.lastpass.com/how-lastpass-works
https://web.archive.org/web/20220606190625/https://www.lastpass.com/how-lastpass-works
https://web.archive.org/web/20220606190625/https://www.lastpass.com/how-lastpass-works
https://web.archive.org/web/20220607231957/https://help.zoho.com/portal/en/kb/accounts/multi-factor-authentication/articles/mfa-introduction
https://web.archive.org/web/20220607231957/https://help.zoho.com/portal/en/kb/accounts/multi-factor-authentication/articles/mfa-introduction
https://web.archive.org/web/20220607231957/https://help.zoho.com/portal/en/kb/accounts/multi-factor-authentication/articles/mfa-introduction
https://web.archive.org/web/20220607231957/https://help.zoho.com/portal/en/kb/accounts/multi-factor-authentication/articles/mfa-introduction
https://web.archive.org/web/20220607231957/https://help.zoho.com/portal/en/kb/accounts/multi-factor-authentication/articles/mfa-introduction
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://web.archive.org/web/20220606190618/https://www.lastpass.com/security/zero-knowledge-security
https://web.archive.org/web/20220606190618/https://www.lastpass.com/security/zero-knowledge-security
https://web.archive.org/web/20220606190618/https://www.lastpass.com/security/zero-knowledge-security
https://web.archive.org/web/20220606190618/https://www.lastpass.com/security/zero-knowledge-security
https://web.archive.org/web/20220530233607/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://web.archive.org/web/20220530233607/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://web.archive.org/web/20220530233607/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://web.archive.org/web/20220530233607/https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html


[8] TOTP: Time-Based One-Time Password Algorithm. ht
tps://tools.ietf.org/html/rfc6238. [Online;
accessed: 02-Oct-2019]. 1, 2

[9] FIDO Alliance and the Path to the Post-Password World.
https://media.fidoalliance.org/wp-content/
uploads/2020/05/FIDO-Consumer-Research-Rep
ort.pdf, May 2020. (Accessed on 06/07/2022). 12

[10] Psychology of Passwords: How Password Hygiene Re-
duces Your Password Security Risk. https://we
b.archive.org/web/20220607215159/https:
//www.lastpass.com/resources/ebook/psych
ology-of-passwords-2020, 2020. (Accessed on
06/07/2022). 11

[11] Announcement of the Future Requirement to Enable
Multi-Factor Authentication (MFA). https://help.s
alesforce.com/s/articleView?id=000356005&t
ype=1, March 2021. (Accessed on 06/07/2022). 12

[12] Back up user data with Auto Backup. https://web.
archive.org/web/20220421053001/https://deve
loper.android.com/guide/topics/data/autoba
ckup, March 2022. (Accessed on 05/25/2022). 10

[13] Duo privacy data sheet. https://web.archive.or
g/web/20221004030758/https://trustportal.ci
sco.com/c/dam/r/ctp/docs/privacydatasheet/
security/cisco-duo-privacy-data-sheet.pdf,
August 2022. (Accessed on 10/03/2022). 14

[14] Introduction - libsodium. https://web.archive.or
g/web/20220531235007/https://doc.libsodium.
org/, March 2022. (Accessed on 05/31/2022). 8

[15] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2:
new generation of memory-hard functions for password
hashing and other applications. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages
292–302. IEEE, 2016. 7

[16] J. Bonneau, E. Bursztein, I. Caron, R. Jackson, and
M. Williamson. Secrets, lies, and account recovery:
Lessons from the use of personal knowledge questions
at google. In Proceedings of the 24th international
conference on world wide web, pages 141–150, 2015. 2

[17] J. Bonneau, C. Herley, P. C Van Oorschot, and F. Sta-
jano. The quest to replace passwords: A framework for
comparative evaluation of web authentication schemes.
In IEEE Symposium on Security and Privacy, pages
553–567, 2012. 1

[18] L. Cavallaro, P. Saxena, and R. Sekar. On the Limits
of Information Flow Techniques for Malware Analysis
and Containment. In Proc. of DIMVA, pages 143–163.
Springer-Verlag, 2008. 3

[19] S. Ciolino, S. Parkin, and P. Dunphy. Of Two Minds
about Two-Factor: Understanding Everyday FIDO U2F
Usability through Device Comparison and Experience
Sampling. In 15th Symposium on Usable Privacy and
Security (SOUPS 2019), pages 339–356, 2019. 2

[20] Lorrie Cranor. Your mobile phone account could be
hijacked by an identity thief. https://web.archive.
org/web/20220310162636/https://www.ftc.gov/
news-events/blogs/techftc/2016/06/your-mob
ile-phone-account-could-be-hijacked-identi
ty-thief, July 7 2016. 3, 11

[21] S. Das, A. Dingman, and L J. Camp. Why Johnny
doesn’t use two factor a two-phase usability study of the
FIDO U2F security key. In International Conference
on Financial Cryptography and Data Security, pages
160–179. Springer, 2018. 2

[22] S. Das, A. Kim, B. Jelen, J. Streiff, L J. Camp, and L. Hu-
ber. Towards Implementing Inclusive Authentication
Technologies for Older Adults. In Who Are You?! Ad-
ventures in Authentication Workshop, WAY ’19, pages
1–5, Santa Clara, California, USA, August 2019. 12

[23] S. Das, B. Wang, and L J. Camp. MFA is a Waste of
Time! Understanding Negative Connotation Towards
MFA Applications via User Generated Content. In Pro-
ceedings of the 13th International Symposium on Human
Aspects of Information Security & Assurance (HAISA
2019), 2019. 2

[24] P. Doerfler, K. Thomas, M. Marincenko, J. Ranieri,
Y. Jiang, A. Moscicki, and D. McCoy. Evaluating Login
Challenges as a Defense Against Account Takeover. In
The World Wide Web Conference, pages 372–382. ACM,
2019. 1, 2

[25] A. Drozhzhin. Sms-based two-factor authentication is
not safe – consider these alternative 2fa methods instead.
Kaspersky Daily, October 16 2018. https://usa.kasp
ersky.com/blog/2fa-practical-guide/16398/.
1, 2

[26] S. Egelman, D. Molnar, N. Christin, A. Acquisti, C. Her-
ley, and S. Krishnamurthi. Please continue to hold. In
9th Workshop on the Economics of Information Security,
2010. 13

[27] S. Egelman, A. Sotirakopoulos, I. Muslukhov,
K. Beznosov, and C. Herley. Does my password
go up to eleven? The impact of password meters on
password selection. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 2379–2388, 2013. 7

https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
https://media.fidoalliance.org/wp-content/uploads/2020/05/FIDO-Consumer-Research-Report.pdf
https://media.fidoalliance.org/wp-content/uploads/2020/05/FIDO-Consumer-Research-Report.pdf
https://media.fidoalliance.org/wp-content/uploads/2020/05/FIDO-Consumer-Research-Report.pdf
https://web.archive.org/web/20220607215159/https://www.lastpass.com/resources/ebook/psychology-of-passwords-2020
https://web.archive.org/web/20220607215159/https://www.lastpass.com/resources/ebook/psychology-of-passwords-2020
https://web.archive.org/web/20220607215159/https://www.lastpass.com/resources/ebook/psychology-of-passwords-2020
https://web.archive.org/web/20220607215159/https://www.lastpass.com/resources/ebook/psychology-of-passwords-2020
https://help.salesforce.com/s/articleView?id=000356005&type=1
https://help.salesforce.com/s/articleView?id=000356005&type=1
https://help.salesforce.com/s/articleView?id=000356005&type=1
https://web.archive.org/web/20220421053001/https://developer.android.com/guide/topics/data/autobackup
https://web.archive.org/web/20220421053001/https://developer.android.com/guide/topics/data/autobackup
https://web.archive.org/web/20220421053001/https://developer.android.com/guide/topics/data/autobackup
https://web.archive.org/web/20220421053001/https://developer.android.com/guide/topics/data/autobackup
https://web.archive.org/web/20221004030758/https://trustportal.cisco.com/c/dam/r/ctp/docs/privacydatasheet/security/cisco-duo-privacy-data-sheet.pdf
https://web.archive.org/web/20221004030758/https://trustportal.cisco.com/c/dam/r/ctp/docs/privacydatasheet/security/cisco-duo-privacy-data-sheet.pdf
https://web.archive.org/web/20221004030758/https://trustportal.cisco.com/c/dam/r/ctp/docs/privacydatasheet/security/cisco-duo-privacy-data-sheet.pdf
https://web.archive.org/web/20221004030758/https://trustportal.cisco.com/c/dam/r/ctp/docs/privacydatasheet/security/cisco-duo-privacy-data-sheet.pdf
https://web.archive.org/web/20220531235007/https://doc.libsodium.org/
https://web.archive.org/web/20220531235007/https://doc.libsodium.org/
https://web.archive.org/web/20220531235007/https://doc.libsodium.org/
https://web.archive.org/web/20220310162636/https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://web.archive.org/web/20220310162636/https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://web.archive.org/web/20220310162636/https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://web.archive.org/web/20220310162636/https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://web.archive.org/web/20220310162636/https://www.ftc.gov/news-events/blogs/techftc/2016/06/your-mobile-phone-account-could-be-hijacked-identity-thief
https://usa.kaspersky.com/blog/2fa-practical-guide/16398/
https://usa.kaspersky.com/blog/2fa-practical-guide/16398/


[28] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: An Information-
flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In Proc. of the 9th USENIX confer-
ence on Operating systems design and implementation
(OSDI), pages 393–407, 2010. 3

[29] F. M Farke, L. Lorenz, T. Schnitzler, P. Markert, and
M. Dürmuth. “You still use the password after all”–
Exploring FIDO2 Security Keys in a Small Company.
In 16th Symposium on Usable Privacy and Security
(SOUPS 2020), pages 19–35, 2020. 2

[30] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention, com-
prehension, and behavior. In Proceedings of the 8th
Symposium on Usable Privacy and Security, SOUPS
’12, New York, NY, USA, 2012. ACM. 3

[31] FIDO Alliance. FIDO2: WebAuthn & CTAP. https:
//fidoalliance.org/fido2/. (Accessed on
06/06/2022). 2

[32] D. Florencio and C. Herley. A large-scale study of web
password habits. In Proceedings of the 16th interna-
tional conference on World Wide Web, pages 657–666.
ACM, 2007. 1

[33] A. Forget, S. Chiasson, and R. Biddle. Helping users
create better passwords: Is this the right approach? In
Proceedings of the 3rd Symposium on Usable Privacy
and Security, pages 151–152. ACM, 2007. 1

[34] C. Gibler, J. Crussell, J. Erickson, and H. Chen. An-
droidLeaks: Automatically Detecting Potential Privacy
Leaks in Android Applications on a Large Scale. In
Proc. of the 5th international conference on Trust
and Trustworthy Computing (TRUST), pages 291–307.
Springer-Verlag, 2012. 3

[35] C. Gilsenan, N. Alomar, and S. Egelman. On Conduct-
ing Systematic Security and Privacy Analyses of TOTP
2FA Apps. In Who Are You?! Adventures in Authentica-
tion Workshop, WAY ’20, pages 1–6, August 2020. 3,
13

[36] Conor Gilsenan. 2FA Stats. https://allthingsaut
h.com/2fastats. (Accessed on 06/07/2022). 12

[37] M. I. Gordon, D. Kim, J. Perkins, Gilhamy, N. Nguyenz,
and M. Rinard. Information-Flow Analysis of Android
Applications in DroidSafe. In Proc. of NDSS Sympo-
sium, 2015. 3

[38] P. Grassi, E. Newton, R. Perlner, A. Regenscheid,
W. Burr, J. Richer, N. Lefkovitz, J. Danker, Y. Choong,
K. Greene, and M. Theofanos. Digital identity guide-
lines: Authentication and lifecycle management, 2017.
7

[39] D. He, T. Katz, and C. Brand. Introducing portability
of Google Authenticator 2SV codes across Android de-
vices. https://web.archive.org/web/20210613
033604/https://security.googleblog.com/2020
/05/introducing-portability-of-google.html.
(Accessed on 05/26/2022). 5

[40] Cormac Herley and Paul Van Oorschot. A research
agenda acknowledging the persistence of passwords.
IEEE Security & Privacy, 10(1):28–36, 2011. 1

[41] I. Ion, R. Reeder, and S. Consolvo. “...No One Can Hack
My Mind”: Comparing Expert and Non-Expert Security
Practices. In 11th Symposium On Usable Privacy and
Security (SOUPS 2015), pages 327–346, Ottawa, 2015.
USENIX Association. 12

[42] P. G. Kelley, L. F. Cranor, and N. Sadeh. Privacy as part
of the app decision-making process. In Proceedings of
the SIGCHI conference on human factors in computing
systems, pages 3393–3402, 2013. 3

[43] J. Kim, Y. Yoon, K. Yi, and J. Shin. ScanDal: Static An-
alyzer for Detecting Privacy Leaks in Android Applica-
tions. IEEE Workshop on Mobile Security Technologies
(MoST), 2012. 3

[44] K. Lee, B. Kaiser, J. Mayer, and A. Narayanan. An
Empirical Study of Wireless Carrier Authentication for
SIM Swaps. In 16th Symposium on Usable Privacy
and Security (SOUPS 2020), pages 61–79. USENIX
Association, August 2020. 1, 3

[45] K. Lee and A. Narayanan. Security and Privacy Risks
of Number Recycling at Mobile Carriers in the United
States. In Symposium on Electronic Crime Research
(APWG eCrime). IEEE, IEEE, 12/2021 2021. 1, 3

[46] Y. Li, H. Wang, and K. Sun. Email as a master key: Ana-
lyzing account recovery in the wild. In IEEE INFOCOM
2018, pages 1646–1654. IEEE, 2018. 2

[47] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes,
and S. Bugiel. Is FIDO2 the Kingslayer of User Au-
thentication? A Comparative Usability Study of FIDO2
Passwordless Authentication. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 268–285. IEEE,
2020. 2

[48] AbdelKarim Mardini and Guemmy Kim. Making sign-
in safer and more convenient. https://web.archiv
e.org/web/20220607220259/https://blog.goo
gle/technology/safety-security/making-si
gn-safer-and-more-convenient/, October 2021.
(Accessed on 06/07/2022). 12

https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/
https://allthingsauth.com/2fastats
https://allthingsauth.com/2fastats
https://web.archive.org/web/20210613033604/https://security.googleblog.com/2020/05/introducing-portability-of-google.html
https://web.archive.org/web/20210613033604/https://security.googleblog.com/2020/05/introducing-portability-of-google.html
https://web.archive.org/web/20210613033604/https://security.googleblog.com/2020/05/introducing-portability-of-google.html
https://web.archive.org/web/20220607220259/https://blog.google/technology/safety-security/making-sign-safer-and-more-convenient/
https://web.archive.org/web/20220607220259/https://blog.google/technology/safety-security/making-sign-safer-and-more-convenient/
https://web.archive.org/web/20220607220259/https://blog.google/technology/safety-security/making-sign-safer-and-more-convenient/
https://web.archive.org/web/20220607220259/https://blog.google/technology/safety-security/making-sign-safer-and-more-convenient/


[49] W. Melicher, D. Kurilova, S. M. Segreti, P. Kalvani,
R. Shay, B. Ur, L. Bauer, N. Christin, L. F. Cranor, and
M. L. Mazurek. Usability and Security of Text Pass-
words on Mobile Devices. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Sys-
tems, pages 527–539. ACM. 7

[50] K. Moriarty, B. Kaliski, and A. Rusch. PKCS #5:
Password-Based Cryptography Specification Version
2.1. RFC 8018, January 2017. 7

[51] K. Moriarty, M. Nystrom, S. Parkinson, A. Rusch, and
M. Scott. PKCS #12: Personal Information Exchange
Syntax v1.1. RFC 7292, July 2014. 7

[52] Jakob Nixdorf. andotp deprecation announcement. ht
tps://web.archive.org/web/20221004024933/h
ttps://forum.xda-developers.com/t/unmaint
ained-app-4-4-open-source-andotp-open-sour
ce-two-factor-authentication-for-android.3
636993/page-6#js-post-87021655. (Accessed on
10/03/2022). 13

[53] K. Owens, O. Anise, A. Krauss, and B. Ur. User Per-
ceptions of the Usability and Security of Smartphones
as FIDO2 Roaming Authenticators. In 17th Symposium
on Usable Privacy and Security (SOUPS 2021), pages
57–76, 2021. 2

[54] Can Ozkan and Kemal Bicakci. Security Analysis of
Mobile Authenticator Applications. In 2020 Interna-
tional Conference on Information Security and Cryptol-
ogy (ISCTURKEY), pages 18–30. IEEE. 3

[55] C. Percival and S. Josefsson. The scrypt password-based
key derivation function. RFC 7914, RFC Editor, August
2016. 7, 13

[56] P. Polleit and M. Spreitzenbarth. Defeating the Secrets
of OTP Apps. In 11th International Conference on IT
Security Incident Management & IT Forensics (IMF),
pages 76–88. IEEE, 2018. 3

[57] Ariel Rabkin. Personal Knowledge Questions for Fall-
back Authentication: Security Questions in the Era of
Facebook. In Proceedings of the 4th Symposium on
Usable Privacy and Security, SOUPS ’08, pages 13–23,
New York, NY, USA, 2008. Association for Computing
Machinery. 2

[58] S. Raponi and R. Di Pietro. A longitudinal study on
web-sites password management (in) security: Evidence
and remedies. IEEE Access, 8:52075–52090, 2020. 2

[59] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez,
S. Sundaresan, J. Amann, and P. Gill. Studying TLS
usage in Android apps. In Proceedings of the 13th
International Conference on emerging Networking EX-
periments and Technologies, pages 350–362, 2017. 3

[60] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On,
N. Vallina-Rodriguez, and S. Egelman. 50 Ways to Leak
Your Data: An Exploration of Apps’ Circumvention of
the Android Permissions System. In Proceedings of
the 28th USENIX Security Symposium, pages 603–620,
2019. 4

[61] E. M. Redmiles and E. Hargittai. New phone, who dis?
Modeling millennials’ backup behavior. ACM Transac-
tions on the Web (TWEB), 13(1):1–14, 2018. 5

[62] E. M. Redmiles, S. Kross, and M. L. Mazurek. How I
Learned to Be Secure: A Census-Representative Survey
of Security Advice Sources and Behavior. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, pages 666–677,
New York, NY, USA, 2016. ACM. 12

[63] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-
Rodriguez, and Serge Egelman. “Won’t Somebody
Think of the Children?” Examining COPPA Compliance
at Scale. Proceedings on Privacy Enhancing Technolo-
gies, (2018.3):63–83, 2018. 4

[64] J. Reynolds, T. Smith, K. Reese, L. Dickinson, S. Ruoti,
and K. Seamons. A tale of two studies: The best and
worst of yubikey usability. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 872–888. IEEE, 2018.
2

[65] Salesforce. Back Up Your Connected Accounts in the
Salesforce Authenticator Mobile App. https://he
lp.salesforce.com/s/articleView?id=sf.sal
esforce_authenticator_backup.htm&type=5.
(Accessed on 10/03/2022). 8, 14

[66] Salesforce. Restore Connected Accounts in the Sales-
force Authenticator Mobile App. https://help.sal
esforce.com/s/articleView?id=sf.salesforc
e_authenticator_restore_from_backup.htm&typ
e=5. (Accessed on 10/03/2022). 14

[67] Stuart Schechter, A.J. Bernheim Brush, and Serge Egel-
man. It’s No Secret. Measuring the Security and Re-
liability of Authentication via “Secret” Questions. In
Proceedings of the 2009 IEEE Symposium on Security
and Privacy, pages 375–390, Los Alamitos, CA, USA,
2009. IEEE Computer Society. 2

[68] Richard Shay, Saranga Komanduri, Patrick Gage Kelley,
Pedro Giovanni Leon, Michelle L Mazurek, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. Encounter-
ing stronger password requirements: user attitudes and
behaviors. In Proceedings of the Sixth Symposium on
Usable Privacy and Security, page 2. ACM, 2010. 1

https://web.archive.org/web/20221004024933/https://forum.xda-developers.com/t/unmaintained-app-4-4-open-source-andotp-open-source-two-factor-authentication-for-android.3636993/page-6#js-post-87021655
https://web.archive.org/web/20221004024933/https://forum.xda-developers.com/t/unmaintained-app-4-4-open-source-andotp-open-source-two-factor-authentication-for-android.3636993/page-6#js-post-87021655
https://web.archive.org/web/20221004024933/https://forum.xda-developers.com/t/unmaintained-app-4-4-open-source-andotp-open-source-two-factor-authentication-for-android.3636993/page-6#js-post-87021655
https://web.archive.org/web/20221004024933/https://forum.xda-developers.com/t/unmaintained-app-4-4-open-source-andotp-open-source-two-factor-authentication-for-android.3636993/page-6#js-post-87021655
https://web.archive.org/web/20221004024933/https://forum.xda-developers.com/t/unmaintained-app-4-4-open-source-andotp-open-source-two-factor-authentication-for-android.3636993/page-6#js-post-87021655
https://web.archive.org/web/20221004024933/https://forum.xda-developers.com/t/unmaintained-app-4-4-open-source-andotp-open-source-two-factor-authentication-for-android.3636993/page-6#js-post-87021655
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_backup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_backup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_backup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_restore_from_backup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_restore_from_backup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_restore_from_backup.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.salesforce_authenticator_restore_from_backup.htm&type=5


[69] Keira Stevens. Hashes, salts, and rainbow tables: Con-
fessions of a password cracker. Dark Reading, May 12
2021. https://www.darkreading.com/applicatio
n-security/hashes-salts-and-rainbow-tables
-confessions-of-a-password-cracker/a/d-id/
1340928. 7

[70] J. Tan, K. Nguyen, M. Theodorides, H. Negron-Arroyo,
C. Thompson, S. Egelman, and D. Wagner. The Effect
of Developer-Specified Explanations for Permission Re-
quests on Smartphone User Behavior. In Proceedings
of the SIGCHI Conference on Human Factors in Com-
puting Systems, 2014. 3

[71] K. Thomas, F. Li, A. Zand, J. Barrett, J. Ranieri, L. Inv-
ernizzi, Y. Markov, O. Comanescu, V. Eranti, A. Mosci-
cki, et al. Data breaches, phishing, or malware?: Un-
derstanding the risks of stolen credentials. In Proceed-
ings of the 2017 ACM SIGSAC conference on computer
and communications security, pages 1421–1434. ACM,
2017. 1

[72] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and
J. King. When It’s Better to Ask Forgiveness than Get
Permission: Designing Usable Audit Mechanisms for
Mobile Permissions. In Proceedings of the 2013 Sym-
posium on Usable Privacy and Security (SOUPS), 2013.
3

[73] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman,
D. Wagner, N. Good, and J. Chen. Turtle Guard: Helping
Android Users Apply Contextual Privacy Preferences. In
Thirteenth Symposium on Usable Privacy and Security
(SOUPS 2017), pages 145–162, Santa Clara, CA, 2017.
USENIX Association. 3

[74] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Col-
nago, L. F. Cranor, H. Dixon, P. Emami Naeini, H. Habib,
N. Johnson, and W. Melicher. Design and Evaluation of
a Data-Driven Password Meter. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems, pages 3775–3786. ACM. 7

[75] Emanuel von Zezschwitz, Alexander De Luca, and Hein-
rich Hussmann. Honey, I shrunk the keys: Influences of
mobile devices on password composition and authenti-
cation performance. In Proceedings of the 8th Nordic
Conference on Human-Computer Interaction: Fun, Fast,
Foundational, pages 461–470. ACM. 7

[76] Alex Weinert. How it works: Backup and restore for
microsoft authenticator. Available: https://web.arch
ive.org/web/20220630215634/https://techcomm
unity.microsoft.com/t5/microsoft-entra-azu
re-ad-blog/how-it-works-backup-and-restore
-for-microsoft-authenticator/ba-p/1006678.
[Online; accessed: 30-Jun-2022]. 8

[77] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android Permissions
Remystified: A Field Study on Contextual Integrity. In
Proc. of USENIX Security, 2015. 3, 4

[78] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egel-
man, D. Wagner, and K. Beznosov. The Feasability
of Dynamically Granted Permissions: Aligning Mobile
Privacy with User Preferences. In Proc. of IEEE Sympo-
sium on Security and Privacy (SP), Oakland ’17, 2017.
3, 4

[79] P. Wijesekera, J. Reardon, I. Reyes, L. Tsai, J. Chen,
N. Good, D. Wagner, K. Beznosov, and S. Egelman.
Contextualizing Privacy Decisions for Better Prediction
(and Protection). In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems, CHI
’18, pages 1–13, New York, NY, USA, 2018. Association
for Computing Machinery. 3

[80] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu,
F. Schaub, S. Wilson, N. Sadeh, S.M. Bellovin, and J.R.
Reidenberg. Automated Analysis of Privacy Require-
ments for Mobile Apps. In Proc. of NDSS Symposium,
2017. 3

[81] Zoho. Secure non-Zoho accounts using OneAuth’s OTP
authenticator. https://web.archive.org/web/20
221003160327/https://help.zoho.com/portal/e
n/kb/accounts/oneauth/v2/articles/otp-auth
enticator#Back_up_and_restore_OTP_secrets.
(Accessed on 10/03/2022). 8

A Base32 decryption heuristic

Given the ciphertext of the encrypted TOTP secret, what is
the probability that a single password guess will generate a
plaintext output that is valid Base32? An ASCII character
has 28 = 256 possible bit permutations and Base32 allows
32 valid characters (A-Z and 2-7). The probability that an
L-length ASCII string is valid Base32 is:

= P(single byte is valid Base32)L = (32/256)L = 0.125L

The probability that a single password guess for a 32 byte
TOTP secret (L = 32), which is a common length used in indus-
try, will generate valid Base32 is: = 0.12532 ≈ 1.26∗10−29.
With a very high probability, this heuristic will accurately
verify whether the user entered the correct recovery password
because it is extremely unlikely that the decryption process
will result in plaintext that is valid Base32 format if the en-
cryption key is derived from an incorrect password.

https://www.darkreading.com/application-security/hashes-salts-and-rainbow-tables-confessions-of-a-password-cracker/a/d-id/1340928
https://www.darkreading.com/application-security/hashes-salts-and-rainbow-tables-confessions-of-a-password-cracker/a/d-id/1340928
https://www.darkreading.com/application-security/hashes-salts-and-rainbow-tables-confessions-of-a-password-cracker/a/d-id/1340928
https://www.darkreading.com/application-security/hashes-salts-and-rainbow-tables-confessions-of-a-password-cracker/a/d-id/1340928
https://web.archive.org/web/20220630215634/https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://web.archive.org/web/20220630215634/https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://web.archive.org/web/20220630215634/https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://web.archive.org/web/20220630215634/https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://web.archive.org/web/20220630215634/https://techcommunity.microsoft.com/t5/microsoft-entra-azure-ad-blog/how-it-works-backup-and-restore-for-microsoft-authenticator/ba-p/1006678
https://web.archive.org/web/20221003160327/https://help.zoho.com/portal/en/kb/accounts/oneauth/v2/articles/otp-authenticator#Back_up_and_restore_OTP_secrets
https://web.archive.org/web/20221003160327/https://help.zoho.com/portal/en/kb/accounts/oneauth/v2/articles/otp-authenticator#Back_up_and_restore_OTP_secrets
https://web.archive.org/web/20221003160327/https://help.zoho.com/portal/en/kb/accounts/oneauth/v2/articles/otp-authenticator#Back_up_and_restore_OTP_secrets
https://web.archive.org/web/20221003160327/https://help.zoho.com/portal/en/kb/accounts/oneauth/v2/articles/otp-authenticator#Back_up_and_restore_OTP_secrets

	Introduction
	TOTP Overview
	Related Work
	2FA and Account Recovery
	Mobile App Analysis

	Methods
	App Selection
	App Analysis
	Exploring the App
	Capturing & Reviewing Network Traffic
	Performing Cryptanalysis


	Results
	Backup without the Network
	Remote Backups without Encryption
	Remote Backups with Encryption
	Password Policies
	KDFs and their Configurations
	Key Management
	How TOTP Backups are Encrypted

	Android Auto Backup
	Privacy Implications
	Reliance on Passwords, SMS, and Email

	Discussion
	The Dangers of Plaintext Backups
	Recommendations
	Responsible Disclosure
	Limitations

	Supplementary Materials
	Base32 decryption heuristic

