
Rendering a Nebula

Sergey Levine∗ Edward Luong†

Figure 1: Final rendering of the nebula. This image was rendered at 400×400 resolution with 4 samples per pixel. The grid
is a 200× 200× 200 voxel grid with 8 samples per voxel for the density. We used 4 million photons and a maximum gathering
distance of 15.0. The image took approximately 10 hours on Amazon’s EC2 servers.

1 Introduction

An emission nebula is a massive cloud of gas ionized by a
bright nearby star. Most of the visible light from such a
nebula is emitted by this ionized gas, and creates dramatic
lighting effects when viewed in the emission lines of the con-
stituent gases.

Figure 2: Hubble photograph H95-44a2

∗email: svlevine@stanford.edu
†email: edluong@stanford.edu

Such a nebula presents an interesting rendering problem, be-
cause the volume for the nebula must be carefully generated
to have a plausible variation in density and composition, and
the rendering process itself must be able to properly simu-
late the emission of light and the scattering of emitted light
by the dust particles which also make up the nebula.

Our reference image for this project was the famous Hubble
photograph H95-44a2, shown in figure 2.

2 Modeling the Pillars

The shape of the pillars was created manually as two iso-
density meshes. The inner surfaces corresponds to maximal
density, and the outer surface to minimal density. Figure
3(a) shows the wireframe of the inner surface (blue) and
outer surface (red) in 3D Studio MAX, 3(b) shows a render-
ing of the surfaces with the outer surface translucent, and
3(c) shows both surfaces rendered with the reference image
texture mapped onto them. This last image provides a good
comparison between this relatively primitive method of ren-
dering the nebula and our method.

2.1 Generating the Pillar Volumes

The first step for computing the density grid for the volume
is to measure the signed distance to each of the isodensity
meshes. The distance is defined as negative if the point is on
the inside of the volume defined by the closed surface, and
positive otherwise. To this end, we exported the mesh into
pbrt using a custom-built conversion program, computed
vertex normals based on the normals of adjacent triangles,
and used this information to determine signed distance.



(a) Wireframe (b) Solid (c) Textured

Figure 3: Pillars modeled in 3D Studio MAX

Figure 4: Comparison between non-perturbed and per-
turbed distance function

A KD tree is used to find the nearest vertex in the mesh, and
the point is then tested against all triangles and edges the
vertex participates in before being test against the vertex
itself. The nearest vertex heuristic does not always produce
the correct result, but if the mesh has regular-sized trian-
gles, it is almost always correct. To compute the sign of
the distance, the normal of the face, edge, or vertex is used.
The normal of a vertex is the mean of the normals of the
faces it participates in, and the normal of an edge is the
perpendicular projection of the mean of its vertices.

We experimented with various falloff functions to generate
the actual density. The initial attempt to use exponential
falloff produces very sharp transitions, so we finally settled
on a cubic falloff function which has a minimal density tan-
gent at the outer curve and a maximal density tangent at
the inner curve.

After initial experimentation, we found that computing dis-
tances while rendering the scene is too slow. However, since
the distance function is quite smooth, we found that pre-
computing the distances into a density grid and trilinearly
interpolating at render-time worked just as well.

To provide additional visual detail, we decided to perturb
the density function for the mesh with procedural noise.
The initial attempt to directly vary density by Perlin noise
or turbulence did not look particularly appealing, because
density would become unnaturally low inside the pillars and
produce strange artifacts. Procedurally perturbing the sam-
ple location produces better results, and gave the cloud a
“fluffy” look, but directly perturbing the distance according
to a Perlin noise function appeared to be the most effective,
as it gave the cloud well-defined “bumps” - figure 4 shows
a side-by-side comparison of a rendering with an without
the bumps. In the final image, the size of these bumps was
reduced to avoid obscuring the hand-made details too much.

2.2 Generating the Surrounding Haze

Figure 5: The final turbulence distribution used the tur-
bulence function raised to an exponent

In addition to the density of the space immediately sur-
rounding the pillars, the density of the surrounding haze
had to be computed as well. In the reference image, this
haze varies appreciably between the top and bottom of the
image, and forms wispy clouds around them. To reproduce
the irregularity of the haze, we used the Perlin-noise based
turbulence function in pbrt raised to an exponent, produc-
ing the images shown in figure 5.

Figure 6: We ran numerous trial renders to find the haze
distribution which most resembled the reference image

To vary the density of the haze in the vertical direction, we
experimented with various functions before finally settling
on cubic falloff with height. However, in addition to de-
pending on height, the density of the haze towards the top
of the image is higher closer to the pillars, so we also used
the distance to the outer surface to affect the density. The
final density function is a linear falloff with distance from
the outer surface, with the rate of falloff depend on height,
until about 2

3
of the way down, where the haze smoothly

becomes uniform in the horizontal slice and slowly increases
until the bottom of the volume. Figure 6 shows the many
experiments we ran to determine the proper density function
- each square is a 50x50 test image.

2.3 Ionized Gas Model

The reference image was made with narrow-band filters that
closely conform to the emission lines of a few gasses. The red
color channel corresponds to the emission line from singly-
ionized sulfur gas, the green to ionized hydrogen, and the
blue to doubly-ionized oxygen. We used the same semantic
for the color channels in our image.

To simulate emission we added an additional emission term
to each voxel, and an ionizingabsorption term. The ioniz-
ing absorption term indicates what percentage of light ab-



sorbed by the voxel in each color channel counts towards
emission, and the emission term indicates how much of the
total absorbed energy is re-emitted in each color channel.
To simulate the fact that the majority of the ionizing ra-
diation arrives in the UV frequency, we added a 4th “UV”
color channel. We decided that full simulation of the light
spectrum was unnecessary to produce the phenomena we
saw, because although gasses technically absorb and emit
in the same frequencies, since the vast majority of the in-
cident radiation was UV, we did not need to account for
non-UV ionizing radiation. Strictly speaking, different ma-
terials absorb different frequencies of UV radiation, but we
found that our image did not suffer significantly from treat-
ing all UV radiation as homogeneous, and the 4-channel
model was sufficient for modeling the emission phenomenon.
We assumed that emitted light is emitted evenly in all direc-
tions, so the emitted radiance for incoming light L is equal
to L · σa · ionizingabsorption · emission/4π.

Figure 7: Halos form when highly emissive, thin gas sur-
rounds denser but more opaque, cooler gas

One of the most interesting phenomena in the reference im-
age is the bright “halo” around the edges of the clouds. This
halo is caused by the ionization front of the gas that consti-
tutes the pillars. The pillars themselves consist of cooler gas
and dust which does not emit light. Because the ionization
front is so thin, it is not readily visible from the front, be-
cause it is quite transparent. However, from the side, rays
traveling to the eye pass through much more of the ionized
gas, and therefore appear brighter. The diagram in figure 7
illustrates this phenomenon [Nadeau et al. 2001].

Besides the ionization front of the pillars, the surrounding
haze is also slightly emissive, and contributes to the greenish-
blue hue of the image.

2.4 Three Materials

Initially, we had hoped that simply varying the density of
volume close to the pillars would be sufficient to create an
ionization layer that is absorbent enough to emit a lot of
light but transparent enough to allow “halos” to be visible
at grazing angles. However, such halos appear very blurred
because non-emitting gas just under the ionizing layer was
transparent enough to allow halos to ”bleed” from the back
of the structure. The cooler hydrogen gas in such structures
is actually molecular H2, which is very efficient at absorbing
radiation. The ionizing radiation on the surface breaks up
these molecules, so the ionization front actually has different
optical properties. We modeled this by providing the interior
of the pillars with different σt, σa, ionizingabsorption, and
emission values. To determine which value to use, we test
against the density of the voxel: the density is raised to a
power, and this is used as the concentration of the H2. The
difference between the density and this value is the ionized

gas. While this is a rough approximation, it is sufficient
for estimating the upper bound on the size of the ionization
layer, since it is not visible when not illuminated by UV
light, and therefore does not need to be computed exactly.

The haze surrounding the pillars also has a different com-
position, as shown by its bluish color. To model this, we
implemented a third material and determined its percentage
of the density by checking how close the density was to the
mean haze density, with a smooth transition into ionization
front material as the density increased.

In addition, the haze contains scattering interstellar dust,
which was modeled according to [Magnor et al. 2005] as hav-
ing a Henyey-Greenstein phase function with an anisotropy
factor of 0.6 and an albedo of 0.6. This scattering component
is part of what makes the bright beams from the emitting
gas on the pillars visible in the reference image.

3 Volumetric Photon Mapping

Simulating light transport is necessary to achieve realistic
images of volumes. While single scattering does fairly well
for thin, homogeneous volumes, it is insufficient in thick,
highly scattering participating media. Our scene is made
entirely of scattering, non-homogeneous volumes. Moreover,
much of the light in the scene is a result of emitted light
that is scattered which produces the halo around the pillars.
The halo is necessary to create a convincing image of a
gaseous volume. This combination presents a difficult
challenge for the standard volumetric rendering packages in
pbrt.

Such an effect cannot be properly captured using an area
light either. The main issue is that we cannot properly
define the surface that is visible to UV rays. Moreover, that
approach is much more difficult and would require a new
area light be generated for different volumes.

The natural choice for us was to extend volumetric photon
mapping techniques explain in [Jensen and Christensen
1998]. Volumetric photon mapping is a two-stage algorithm
that solves the light transport equation by first tracing
paths of photons from the light and storing where inter-
actions occur. In the second stage, the radiance across a
ray is computed by marching across and gathering nearby
photons. The gathered photons can be used to estimate the
radiance along the ray. Figure 8 compares images rendered
with and without photon mapping.

3.1 Photon Tracing in Non-homogeneous Medium

During the photon tracing stage, we fire photons out of
the lights and trace their progress through the medium.
Photons may either interact with the medium or be trans-
mitted through. In the case of interaction, we store the
photon and determine whether or not it becomes scattered
or absorbed. At first, we implemented photon tracing using
ray marching; however, this approach resulted in too much
variance. Instead, we importance sampled interaction time,
as alluded to in both [Jensen and Christensen 1998] and
[Magnor et al. 2005].

Neither paper explains explicitly how to do this so we had



(a) Single scattering (b) Multiple scattering

Figure 8: Comparison of a box nebula volume rendered
with different volume integrators. Notice how with single
scattering, the box looks very sharp, whereas multiple scat-
tering adds volume around it to soften it. Also, multiple
scattering makes the image brighter as invisible UV light is
being scattered into the visible spectrum.

to fill in the details on our own. Jensen gives the cumulative
probability density function, F (x) for the probability of a
photon interacting with the media.

F (x) = 1− τ(xs, x) = 1− e−
∫ x
xs
κ(ξ)dξ

where xs is the current location position of the photon and
x is the location of the next interaction. Given a uniformly
random u ∈ [0, 1), we essentially solve for x using the in-
version method though inversion here is not necessarily sim-
ple because the medium is non-homogeneous. That is, with
u = F (x):

u = 1− e−
∫ x
xs
κ(ξ)dξ

e−
∫ x
xs
κ(ξ)dξ = 1− u∫ x

xs

κ(ξ)dξ = − ln(1− u)

We solve this integral using simple numerical methods.
Note that the probability density function, f(x) = F ′(x)
is simply the transmittance, τ(xs, x) multiplied by the
extinction term, κ(x).

Another difficulty in photon tracing was getting all the
weights correct such that energy was conserved. The
majority of the time spent on implementing multiple
scattering (aside from tweaking settings in the scene file)
was devoted to understanding the literature and balancing
the equations. Our problem had the added difficulty that
we wanted to simulate the scattering of emitted light as well
whereas conventional approaches only calculate emission
directly (using single scattering).

3.2 Emittance and Scattering

When a photon interacts with the medium, it is either scat-
tered or absorbed. The probability of scattering is given by
the albedo. We flip a coin to determine which event occurs.
If scattered, we pick a new direction uniformly at random

Figure 9: OpenGL viewer to help visualize the photon
tracing stage.

and attenuate it by the phase function. If emitted, we effec-
tively create a new photon with the emitted light and pick
a direction uniformly.

3.3 Per Color Channel Tracing

The type of interaction with the medium depends largely
on the density and the wavelength of light. Rather than
simulating the whole spectrum, we augmented the existing
spectrum to include UV light and made scattering and
absorbency dependent on color channel. This extension
required that photons that contained more than one color
component to be split up into the individual channels, and
then each traced separately.

3.4 Photon Viewer

In order to aid in debugging the photon tracing stage,
we wrote a small OpenGL application that allowed us to
visualize the locations of photons. It allowed us to examine
where photons of certain color channels were and helped
explain artifacts we had when trying to tweak the final
image.

3.5 Photon Gathering

The photon gathering stage was relatively straight-forward
once weights on the photon tracing stage were correct.
One problem we ran into was bright photons appearing as
sharp spheres. pbrt’s extended photon map dealt with this
problem by using a blur kernel during gathering which we
adapted for our gathering stage as well.

3.6 Managing High Variance

Since there is so much participating media, our photon map
has a lot of variance. We spent a considerable amount of
time into reducing the variance. In the end, we still had to
use 4 million photons to get a relatively smooth image.

3.6.1 Importance Sampling Lights

Importance sampling the lights was the first variance reduc-
tion technique we employed. By choosing lights according
to their power, we avoid emitting photons with low energy



Figure 10: Stars are rendered as points and form Gaussians
in the final image due to the “bloom” effect used in EXR
conversion

that are unlikely to contribute during the gathering stage.
exphotonmap provided with pbrt uses this as well, so porting
that code into our photon tracer was straight-forward.

3.6.2 Tracing UV Rays

We noticed early on that the main effect we wanted from
multiple scattering was the scattering of emitted light.
Single scattering capture many effects in the sparse gas
quite well and we wanted to leave as much of that intact as
possible. Consequently, we only emit UV photons from light
sources. After these photons are absorbed and emitted into
the visible spectrum, we continue to trace these photons.
This allowed us to ignore the scattering of RGB light from
the stars which was unnoticeable when scattered multiple
times.

3.6.3 Ray Marching for Direct Lighting

As suggested by Jensen, we continued to use ray marching
to compute the direct lighting term rather than store those
photons in the photon map. The photon map could store
direct lighting interaction; however, doing so would result
in a lot of photons being deposited on the first interaction.
This decreases the number of photons being used for
multiple scattering which is what we primarily needed it
for. Moreover, since we were only tracing UV rays, we were
not even considering direct interaction in RGB channels
emitted from the lights.

3.6.4 Forced Interaction

Another strategy to reducing variance in multiple scattering
was artificially increasing the coefficients to force interac-
tions. This allowed us to have more photons in the areas we
cared about. While this does introduce bias into the image,
it does so in a way that produces much more desirable results
in the long run. Moreover, this provides speed-ups in pho-
ton tracing as less photons need to be traced from the lights.

4 Rendering Foreground and Background
Stars

Considering the scales involved in the image, stars are point
light sources. As such, they are not visible on their own. In

reality, even the tiniest point light sources are visible because
their radiation strikes the photo-sensor and illuminates adja-
cent cells. To properly render stars, we added an additional
“star-rendering” pass to the pbrt sampler model, where each
star location is passed as a special sample to the camera,
which computes the position on the film that the light from
the star strikes. This ray is then processed as usual, except
that it is terminated at the position of the star, where the
star’s power, attenuated by the square of the distance and
the participating medium, is added to the ray.

The accumulated energy is deposited at a single point on
the film, which creates a very bright spot. When converting
from EXR to low dynamic range formats, a bloom filter is
used to expand this bright spot into a Gaussian.

Except for a handful of manually placed stars, most stars in
the image are placed randomly to provide the starry back-
ground. Light sources are not attached to most of the stars
to reduce variance, since most are not bright enough to ap-
preciably alter the appearance of the image.

5 Acceleration and Video Rendering

(a) Aliasing Detail (b) Color grid (c) Original

Figure 11: Comparison of images rendered using the color
grid and from the original density field

Rendering the entire scene using single scattering integra-
tion and photon mapping takes a very long time. In or-
der to construct an animation of the scene, we needed some
way to significantly decrease rendering times. To this end,
we constructed a color grid out of the image by comput-
ing the total radiance in six basis directions at each voxel
on a 200x200x200 grid, as well as the transmittance. This
allowed the entire scene to be re-rendered quickly using a
simple emission integrator and a new volumetric primitive
which returns the emissive color at a particular point in a
particular direction by trilinearly interpolating the color grid
to obtain values for the three adjacent directions, and inter-
polating between them. Although our program is able to
construct the color grid with an arbitrary number of sam-
ples per voxel, we had to point-sample the volume when con-
structing the final color grid since the computational times
were becoming very high. Because of this, mild aliasing is
visible when rendering using the color grid at higher res-
olutions. However, we were able to render one frame per
minute at 400x400 resolution. Figure 11(a) below shows de-
tail from a high-resolution image rendered using the color
grid which shows aliasing, and a side-by-side comparison of
low-resolution images rendered with the color grid 11(b) and
from the original density map 11(c).



(a) Rendered Image (b) Adjusted Contrast

Figure 12: Final renders of the nebula.

6 Results

In order to reduce the rendering times, we tiled our image
and rendered each tile on a separate pbrt process. The fi-
nal render was done in parallel across 16 different cores via
Amazon EC2 and took less than 10 hours. In the end, we
increased the contrast just slightly to provide a more drastic
effect. The change is subtle (see Figures 12(a) and 12(b))
but adds a lot to the final image.

7 Conclusion

7.1 Challenges

Most of the challenges encountered are discussed in the
appropriate sections. One problem that most volume-
centric scenes suffer from is huge rendering times from
single-stepping for direct lighting and photon gathering. We
found that the single-stepping was our biggest bottleneck
and we had no feasible way to avoid this. Because of this, all
of our test images were typically done with a small number
of samples and/or at a low-resolution. While rendering the
final image at higher resolution and samples per pixel, we
saw severe aliasing artifacts in the volume that were not
present in our test images. In order to meet the deadline,
we had to quickly fix our code and resort to using Amazon’s
EC2 to render the final image. Originally, our final image
render was scheduled to take over 48 hours using 4 available
machines. With Amazon’s EC2, the final render took just
under 10 hours.

7.2 Division of Work

Sergey Levine worked on modeling the pillars, rendering the
stars, and the acceleration structure for the animation. Ed-
ward Luong worked on the volumetric photon mapping in-
tegrator and setting up Amazon EC2. Both of us spent a

considerable amount of time tweaking settings in the scene
file to get the image just right.

References

Bajaj, C., Ihm, I., and Kang, B. 2005. Extending the pho-
ton mapping method for realistic rendering of hot gaseous
fluids. Computer Animation and Virtual Worlds 16, 3–4.

Jensen, H. W., and Christensen, P. H. 1998. Efficient
simulation of light transport in scenes with participating
media using photon maps. In Proceedings of SIGGRAPH
1998, ACM Press / ACM SIGGRAPH, Computer Graph-
ics Proceedings, Annual Conference Series, ACM, 311–
320.

Magnor, M., Hildebrand, K., Lintu, A., and Hanson,
A. 2005. Reflection nebula visualization. Proc. IEEE
Visualization 2005, Minneapolis, USA (Oct.), 255–262.

Nadeau, D. R., Genetti, J. D., Napear, S.,
Pailthorpe, B., Emmart, C., Wesselak, E., and
Davidson, D. 2001. Visualizing stars and emission neb-
ulas. Computer Graphics Forum 20, 1, 27–33.


	Introduction
	Modeling the Pillars
	Generating the Pillar Volumes
	Generating the Surrounding Haze
	Ionized Gas Model
	Three Materials

	Volumetric Photon Mapping
	Photon Tracing in Non-homogeneous Medium
	Emittance and Scattering
	Per Color Channel Tracing
	Photon Viewer
	Photon Gathering
	Managing High Variance
	Importance Sampling Lights
	Tracing UV Rays
	Ray Marching for Direct Lighting
	Forced Interaction


	Rendering Foreground and Background Stars
	Acceleration and Video Rendering
	Results
	Conclusion
	Challenges
	Division of Work


