
1

Face Clustering: Representation and Pairwise
Constraints

Yichun Shi, Student Member, IEEE, Charles Otto, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—Clustering face images according to their latent
identity has two important applications: (i) grouping a collection
of face images when no external labels are associated with images,
and (ii) indexing for efficient large scale face retrieval. The
clustering problem is composed of two key parts: representa-
tion and similarity metric for face images, and choice of the
partition algorithm. We first propose a representation based on
ResNet, which has been shown to perform very well in image
classification problems. Given this representation, we design a
clustering algorithm, Conditional Pairwise Clustering (ConPaC),
which directly estimates the adjacency matrix only based on the
similarities between face images. This allows a dynamic selection
of number of clusters and retains pairwise similarities between
faces. ConPaC formulates the clustering problem as a Conditional
Random Field (CRF) model and uses Loopy Belief Propagation
to find an approximate solution for maximizing the posterior
probability of the adjacency matrix. Experimental results on two
benchmark face datasets (LFW and IJB-B) show that ConPaC
outperforms well known clustering algorithms such as k-means,
spectral clustering and approximate Rank-order. Additionally,
our algorithm can naturally incorporate pairwise constraints to
work in a semi-supervised way that leads to improved clustering
performance. We also propose an k-NN variant of ConPaC, which
has a linear time complexity given a k-NN graph, suitable for
large datasets.

Index Terms—face clustering, face representation, Conditional
Random Fields, pairwise constraints, semi-supervised clustering.

I. INTRODUCTION

CAMERAS are everywhere, embedded in billions of smart
phones and hundreds of millions of surveillance systems.

Surveillance cameras, in particular, are a popular security
mechanism employed by government agencies and businesses
alike. This has resulted in the capture of suspects based on
their facial images in high profile cases such as the 2013
Boston Marathon Bombing [1]. But, getting to the point of
locating suspects’ facial images typically requires manual
processing of large volumes of images and videos of an event.
The need for automatic processing of still images and videos
to assist in forensic investigations has motivated prior works
on clustering large collections of faces by identity [2]. In [3],
Nech et al. also used face clustering to help label face images
and compiled MF2 face dataset.

In surveillance applications, the quality of available face
images is typically quite low compared to face images in some
of the public domain datasets such as the Labeled Faces in
the Wild (LFW) [4]. The IARPA Janus project is pushing the

Y. Shi and A. K. Jain are with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI, 48824. E-mail:
shiyichu@msu.edu, jain@cse.msu.edu

C. Otto is with Noblis, Reston, VA. E-mail: ottochar@gmail.com

Fig. 1: Face clustering workflow. A deep neural network is trained
to generate the representations for aligned face images. Given the
representation and a similarity measure, goal of clustering is to group
these unlabeled face images according to their identity. In the semi-
supervised scenario, pairwise constraints are provided along with the
unlabeled data. The red line here indicates a cannot-link pair and
green lines indicate must-link pairs.

boundaries of unconstrained face recognition and has released
a dataset, NIST IJB-B [5]1, where many of the faces cannot be
detected by off-the-shelf face detectors [7]. The face recogni-
tion problem posed by the Janus benchmark may therefore be
closer to that encountered in forensic applications. We attempt
to handle this more difficult category of faces by: (i) improving
the face representation (through the use of large training
sets, and new deep network architectures), (ii) developing an
effective face clustering algorithm to automatically group faces
in images and videos, and (iii) incorporating user feedback
during the clustering process via a semi-supervised extension
of the proposed clustering algorithm.

To develop a representation for face clustering, we leverage
two public domain datasets: CASIA-Webface [8] and VGG-
Face [9]. In terms of network architecture, we adopt deep
residual networks, which have resulted in better performance
than VGG-architecture on the ImageNet benchmark [10], and
improved results over the architecture proposed in [8] on the
BLUFR protocol [11].

Given a representation, we propose a face clustering
method, called Conditional Pairwise Clustering (ConPaC) to
group the face collection according to their hidden class
(subject identity) using the pairwise similarities between face
images. No assumption about the data, including the true
number of identities (clusters), is used; only a threshold on
similarity is specified to balance between the precision and
recall rate. Instead of learning new similarity measures or
representations and feeding them to a standard partitional or
hierarchical clustering method, Conditional Pairwise Cluster-
ing directly treats the adjacencies between all pairs of faces as

1There is also an earlier version with smaller number of images, called
IJB-A released in 2015 [6]

ar
X

iv
:1

70
6.

05
06

7v
2

 [
cs

.C
V

]
 2

7
Ju

l 2
01

8

2

the variables to predict and look for a solution that maximizes
the joint posterior probability of these variables given their
corresponding pairwise similarities. To model this conditional
distribution, we propose a triplet consistency constraint which
reveals such a dependency between the output variables that a
valid adjacency matrix must be transitive to represent a parti-
tional clustering. That means any two adjacent points should
share exactly the same adjacent neighbors. The proposed
model can dynamically determine the number of clusters, and
also retain the similarity information. In particular, we model
the problem as a Conditional Random Field (CRF) and employ
Loopy Belief Propagation to arrive at a valid adjacency matrix.
This model is easily extended to the semi-supervised clustering
by accepting a set of pairwise constraints (either must-link, or
cannot-link assignments) on the similarity matrix.

We perceive the following contributions in this work: (i)
We propose a clustering algorithm (ConPaC) based on direct
estimation of an adjacency matrix derived from pairwise
similarities between faces using the learned representation
from a Deep Residual Network; (ii) We evaluate the proposed
method on two unconstrained face datasets: LFW and IJB-
B; (iii) We show that the proposed method can be naturally
applied to semi-supervised face clustering scenario; (v) We
propose an approximate k-NN variant of the algorithm for
efficient clustering of millions of face images.

II. BACKGROUND

A. Face Representation

Face images have been traditionally represented by appear-
ance models or local descriptors [12] [13] [14] [15]. But as
Deep Neural Networks (DNN) have shown their great potential
in solving computer vision problems due to its representation
learning ability [16] [17] [18], a number of DNN based
methods have been proposed for face representation and
recognition. The DeepFace [19] method trained a CNN on
a dataset of four million facial images belonging to more
than 4,000 identities. The training is based on minimizing
classification error and the output of the last hidden layer taken
as the face representation. DeepFace significantly surpassed
the traditional methods in face recognition, especially for
unconstrained face images. Sun et al. extended the work
of DeepFace in their DeepId series [20] [21] [22] [23].
They proposed to use multiple CNNs with joint Bayesian
framework [24] and added supervision to early convolutional
layers. Schroff et al. [25], in their FaceNet work, abandoned
the classification layer and instead introduced the triplet loss
to directly learn an embedding space where feature vectors of
different identities could be separated with Euclidean distance.

B. Face Clustering

Cluster analysis is an important topic widely studied in
pattern recognition, statistics and machine learning [26]. It
is useful for exploratory analysis by a preliminary grouping
of a collection of unlabeled data. Due to potentially large
and unknown number of identities in many large scale face
collections, it is useful to tag the face images with the
labels obtained from clustering. Otto et al. [2] provided a

brief review of face clustering. Most of the previous stud-
ies [27] [28] [29] [30] [31] [32] focused on learning a
good similarity matrix or robust representations from non-
discriminative low-level features and then partitioned the
dataset with standard clustering algorithms such as spectral
clustering. However, in practice, high-level features gener-
ated by deep neural networks today can give quite robust
representation, and hence similarity, even with simple metric
functions. Furthermore, many supervised metric or represen-
tation learning methods have been proposed, which are shown
to be able to enhance the deep representations and have
good generalizability [24] [33]. Therefore, as we will show
in Section IV-B, similarity learning is relatively simple in
practical face clustering problems; instead the partitioning
algorithm plays a more important role.

Otto et al. [34] [2], based on the work of [31], made use
of the assumption that homogeneous face images (images
that belong to the same identity) usually have similar nearest
neighbors and proposed the approximate Rank-order distance
metric. They showed that by linking all the image pairs
within a certain distance, they can achieve good clustering
performance on challenging unconstrained face datasets.

C. Semi-supervised Clustering

Given the difficult nature of data clustering (choice of
representation, similarity measure and number of clusters), one
approach to improve clustering performance is to incorporate
side-information. One common form of side-information is
pairwise constraints, indicating that a pair of data points either
must be placed in the same cluster (a “must-link” constraint),
or they cannot be placed in the same cluster (a “cannot-link”
constraint), as shown in Figure 1. Wagstaff et al. [35] first
incorporated the pairwise constraints into k-means algorithm
by forcing the cluster assignments to satisfy the constraints
and showed that user-specified constraints could help to im-
prove clustering results. Xing et al. [36] proposed to learn a
Mahalanobis distance metric from the given constraints before
applying k-means. Basu et al. [37] designed a probabilistic
model for semi-supervised clustering with Hidden Markov
Random Fields (HMRFs) and used EM algorithm to optimize
the parameters. Research has also been conducted on incorpo-
rating pairwise constraints into hierarchical clustering [38] and
spectral clustering [39] [40]. For a review of semi-supervised
clustering, readers are referred to [41].

D. Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs) are a type of undirected
probabilistic graphical models first proposed by Lafferty et
al. for predicting labels of sequential data [43] and later
introduced to computer vision to model images [44] [45] [46].
The difference between CRFs and traditional Hidden Marcov
Models (HMMs) [47] lies in that CRF is a discriminant model
which directly models the conditional distribution p(Y |X)
rather than joint distribution p(Y,X) and predicts the labels

3

(a) (b) (c) (d)

Fig. 2: Example face images from (a) LFW, (b) IJB-B, (c) CASIA-webface, and (d) VGG datasets.

Fig. 3: An example factor graph of a general CRF model. Here,
the filled nodes are input nodes and the white nodes are output
nodes. Each factor (square) represents a potential function on a clique,
encoding the contraints between nodes. There are constraints either
between input and output or between output nodes. The figure is
taken from [42].

Y by maximizing the posterior probability. Generally, a CRF
can be formulated as:

p(Y |X) =
1

Z

∏
Cp∈C

∏
ψc∈Cp

ψc(Xc, Yc; θp), (1)

where Z is the normalization factor, C = {C1, C2, ..., CP } is
the set of all cliques in the graph, ψc is a potential function
defined on the variables (Xc, Yc) in clique Cp, and θp is a set
of parameters of the model [42]. We can represent undirected
graphical models by a factor graph, where a factor node is
there for each potential function and connects to every node
in its clique, as shown in Figure 3. Usually, there are two
types of potential functions in CRFs: (1) association potential
that equals the local conditional distribution over observa-
tions p(Yc|Xc) and (2) interaction potential that encodes the
dependencies between different output variables. Although
both of them are originally defined as Gibbs distributions
on features in [43], association potentials are often substi-
tuted by supervised discriminant classifiers such as neural
networks [44] [48].

As for inference on the CRFs, any method for undirected
graphical models can be applied, and one of these methods
is Belief Propagation (BP) [49]. There are two types of BP
algorithms: sum-product and max-sum. They are exact infer-
ence methods, respectively, for finding marginal probability
and maximizing posterior probability on tree-like graphical
models. But because they only involve local message updates,
they can also be applied to graphs with loops, resulting in
Loopy Belief Propagation. Although Loopy Belief Propagation
is not guaranteed to converge, it has achieved success in a

variety of domains [50] [51] [52]. It has also been shown
that the result of Loopy Belief Propagation corresponds to the
stationary point of Bethe free energy and that it is related
to variational methods [53]. Readers are referred to [54] for
further information on CRFs and Loopy Belief Propagation.

III. FACE DATASETS

We leverage the CASIA-Webface [8], and VGG-Face [9]
datasets to train networks for learning the representation to be
used for clustering. We then evaluate the performance of our
clustering algorithm on two benchmarks datasets, LFW [4],
and IARPA Janus Benchmark-B (IJB-B). Some example im-
ages from these datasets are shown in Figure 2. As stated
in [8] and [9], there is no overlap of identity between LFW
and VGG-Face or LFW and CASIA-Webface. Similarly, IJB-
B does not include overlapping identities with VGG-Face or
CASIA-Webface [5].

A. LFW

The Labeled Faces in Wild (LFW) [4] contains 13, 233 face
images of 5, 749 individuals; of those 5, 749 individuals, 4, 069
have only one face image each. The dataset was constructed
by searching for images of celebrities and public figures,
and retaining only those images for which an automatically
detectable face via the off-the-shelf face detectors [7] was
present. As a result, facial pose variations in LFW are limited.

B. IJB-B

The IJB-B dataset [5] is composed of 7 different cluster-
ing experiments, with increasing number of subjects. These
experiments, respectively, involve 32, 64, 128, 256, 512,
1, 024, 1, 845 subjects with total of 1, 026, 2, 080, 5, 224,
9, 867, 18, 251, 36, 575 and 68, 195 images, respectively. Two
protocols related to clustering are defined for IJB-B dataset: (i)
clustering of detected faces and (ii) face detection + clustering.
Since the focus of this work is face clustering, we will use the
first protocol and assume faces have already been detected.
The faces are aligned following the procedure in [55], using
the bounding boxes provided in IJB-B as the starting point for
landmark detection. Many images in the IJB-B datasets are in
extreme poses or of low quality, making the clustering task

4

Fig. 4: An example showing the normalization of face images. We
normalize all our images before feeding into the network according
to the procedure in [55], where the figure is taken from.

more difficult for IJB-B than for LFW. Most of the images
in the clustering protocols of IJB-B are from video frames,
making it more related to the surveillance application.

C. CASIA-Webface

The CASIA-webface dataset [8] is a semi-automatically
collected face dataset for pushing the development of face
recognition systems. It contains 494, 414 images of 10, 575
subjects (mostly celebrities) downloaded from internet. How-
ever, we are unable to localize faces in some of the images with
the face detector from the Dlib library 2. So we use a subset of
CASIA-Webface with 404, 992 face images of 10, 533 subjects
to train our network. This dataset has been popular for training
deep networks.

D. VGG-Face

The VGG-Face dataset was released in 2016 as a set of 2.6
million URLs with corresponding face detection locations [9].
We could acquire only 2.2 million images of the original
2.6 million listed URLs due to broken links. Example VGG
images are shown in Figure 2(d). Additionally, among the
images we were able to download, we identified a number of
exact duplicate files. On manual examination, these duplicates
typically had mislabeled identities, or were placeholder images
served by the image host when the original image was no
longer available. After excluding duplicate images, we retained
1.7 million images from the VGG dataset. We combined
these images with the CASIA-Webface dataset (and merged
overlapping subject identities), to get a total of 2.1M images,
of 11,326 distinct subjects.

IV. METHODS

A. Representation

He et al. [10] used a “deep residual network” architecture
to achieve competitive results on the ImageNet object recog-
nition dataset. So we directly adapt the architecture for face
recognition (leveraging the Torch7 framework [56] and the
implementation of residual networks released by Facebook
AI Research fb.resnet.torch3). We have investigated the 50,
and 101-layer architectures outlined in [10]. In terms of data
augmentation, we scale our normalized face images following
the alignment procedure proposed in [55] to 256 × 256, as

2http://dlib.net
3https://github.com/facebook/fb.resnet.torch

shown in Figure 4, and randomly crop 224 × 224 regions
during training. We additionally flip images during training,
and use the scale and aspect-ratio augmentations from [57].
As for feature extraction, each image is aligned using the
same procedure, then a 2048-dimension feature vector is
extracted from the bottleneck layer4 with 10-crop strategy5

and is normalized into unit `2 norm. Because of the low
quality of the face images in IJB-B benchmark, many images
cannot be aligned using Dlib. In such cases, we crop a square
region containing the ground-truth bounding box provided in
the protocol. This is allowed in the test 7 of the benchmark,
where the detection task is assumed to be already finished.

B. Motivation

Face clustering, like other clustering problems, attempts to
partition data points into a number of groups based on their
similarities or structure. However, in real-world problems of
unconstrained face clustering, the situation could be quite
different such that many popular clustering algorithms are
not suitable. On one hand, most clustering algorithms are
based on certain distribution assumptions of the data. For
example, k-means assumes that the data points of different
classes are close to the centroids of the classes and spectral
clustering [58] [59] aims at finding a balanced partition of the
dataset. But in fact, the data could be distributed in arbitrary
shapes, depending on the representation, and the sizes of
different clusters in a large face image collection could be
very unbalanced. Besides, most algorithms require the number
of clusters as an input parameter, which is usually unknown
and quite large in real-world face clustering problems. On the
other hand, the rapid development of deep neural networks
makes it possible to learn highly robust representations for
unconstrained face images. Even with simple metric functions,
good pairwise similarities can be acquired, providing reliable
evidence on pairwise homogeneity (whether a pair of face
images belong to the same identity).

In Figure 5, by visualizing the similarity matrix from
ResNet representations, we can see it is highly consistent with
the ground-truth adjacency matrix. However, in comparison,
the resulting adjacency matrices (by using the ground-truth
number of classes) of k-means and spectral clustering are not
only far from the ground-truth one, but also not similar to
the input similarity matrix itself. Thus, we attempt to partition
the face images merely based on the pairwise similarities; no
other assumptions, including the number of identities is used.

C. Problem Formulation

Given a dataset X of size N , where each Xi, i = 1, 2, ...N
is a data point, we want to directly estimate an N × N
adjacency matrix Y , where Yij is a binary variable indicating
whether Xi and Xj are assigned to the same cluster. As-
suming that we are given the pairwise conditional probability
p(Yij |Xi, Xj) for all pairs, the goal is to find the overall

4The last hidden layer. Because a ReLU layer is used as the activation
function for the bottleneck layer, all the feature values are non-negative.

5Average the features extracted from 10 different sub-crops of size 224×
224 (corners + center with/without horizontal flips).

5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) similarity matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) ground-truth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) k-means (C = 5, 749)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) k-means (C = 500)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) spectral clustering (C = 5, 749)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) spectral clustering (C = 75)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) approx. Rank-order

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) proposed

Fig. 5: Visualization of the similarity matrix and adjacency matrices. Using the face representations from deep neural networks, similarity
matrix (using cosine similarity) is highly consistent with the ground-truth adjacency matrix. However, using the ground-truth number of
clusters (C = 5, 749) both k-means and spectral clustering fail to retain the similarities and break the big clusters into small groups. Tuning
the number C to smaller values give better performance, but makes the clusters less pure. Thus, to make full use of the similarity matrix,
we attempt to find a partition by maximizing the consistency between the adjacency matrix and the given pairwise similarities.

adjacency matrix Y by maximizing the posterior probability
p(Y |X). To model this conditional distribution, we need to
consider the dependencies between different variables Yij , for
which we propose a triplet interaction constraint to constrain
the adjacency matrix Y to be valid. By valid, we mean that
the corresponding graph of that adjacency matrix is transitive
and represents a valid partition. This leads to a structured
prediction problem, and we use a Conditional Random Field
(CRF) model to formulate it and maximize the posterior
probability:

p(Y |X) =
1

Z

∏
i<j

ψu(Yij)
∏

i<j<k

ψt(Yij , Yik, Yjk), (2)

where Z is the normalizing factor, the unary association poten-
tial ψu(Yij) = p(Yij |Xi, Xj) is the pairwise conditional dis-
tribution over observations and ψt(Yij , Yik, Yjk) is the triplet
interaction potential to constrain Y to be valid. Because the
adjacency matrix is symmetric, we only need to take Yij with
i < j as variables, so there are in all 1

2N(N−1) output nodes.
The unary potential is the likelihood of a pair of data points
belonging to the same class, which is exactly what the pairwise
similarity stands for, so we apply a transformation to the cosine
similarity between the deep representations of two faces to
attain the genuine unary potential ψu(Yij = 1). In practice, we
find that this works well, even without attempting to explicitly
model the probability distribution for unary potential.

For a partitional clustering, if a point i is connected to any
point j in a cluster, it should also connect to all the other
points in that cluster but not to any point outside the cluster.
However, not every adjacency matrix satisfies this requirement.
In order to check the validity of an adjacency matrix, we use
a measure based on triplet consistency. Consider a triplet of
any three points, as shown in Figure 6. Then there are four
possible cases regarding the states of three pairs in one triplet.

(1) (2) (3) (4)

Fig. 6: Four cases of pairwise adjacency in a triplet. A green line
means the two points are connected, i.e. assigned to the same cluster.
And a red dash line means the two points are not connected. A valid
partition is obtained if and only if none of the triplets are in case (2).

An adjacency matrix is valid if and only if none of the triplets
is in case (2). Hence we can model the dependencies between
different Yij with triplet cliques. In our undirected graph, every
triplet (Yij , Yik, Yjk) is fully connected, and forms a clique.
The interaction potential for a triplet clique is defined as:

ψt(Yij , Yik, Yjk) = exp (−αV (Yij , Yik, Yjk)), (3)

where the energy function V is an indicator function which is
1 iff the triplet is inconsistent and 0, otherwise:

V (Yij , Yik, Yjk) =(1− Yij)YikYjk + Yij(1− Yik)Yjk
+ YijYik(1− Yjk)

(4)

To seek a valid partition, we consider α in Equation (3) to be
sufficiently large such that it dominates the formula. However,
it is worth noting here that we do not need to explicitly define
α in our algorithm, as shown in the next subsection.

Due to numerical issues, usually we take the negative
logarithm on both sides of Equation (2) and minimize its
corresponding energy function:

E(Y,X) =
∑
i<j

D(Yij) +
∑
i<j<k

αV (Yij , Yik, Yjk), (5)

where D(Yij) = − logψu(Yij) is the unary potential energy.

6

𝑌𝑗𝑘

𝑌𝑖𝑘

𝑌𝑖𝑙

𝑌𝑗𝑙𝑌𝑖𝑗𝜓𝑡 𝜓𝑡

𝜓𝑢

…………

𝑋𝑖 𝑋𝑗

(a) Factor graph

𝑌𝑗𝑘

𝑌𝑖𝑘

𝑌𝑖𝑙

𝑌𝑗𝑙𝑌𝑖𝑗𝜓𝑡 𝜓𝑡

𝜓𝑢

…………

𝑋𝑖 𝑋𝑗

(b) Initialization

𝑌𝑗𝑘

𝑌𝑖𝑘

𝑌𝑖𝑙

𝑌𝑗𝑙𝑌𝑖𝑗𝜓𝑡 𝜓𝑡

𝜓𝑢

…………

𝑋𝑖 𝑋𝑗

(c) Iteration

Fig. 7: A graphical illustration of the proposed Conditional Random Field using the neighborhood of output node (pair) Yij as an example.
The figure shows how the nodes are connected, how the factors are related to potentials and how the messages are passed in the graph. Each
green node is an input node corresponding to one data point, each blue node is an output node corresponding to an element in the adjacency
matrix, and each rectangle is a factor node representing a potential function, which encodes the constraint between variables. The dash lines
represent the omitted links in this figure. There are two kinds of constraints: (i) unary potential which pushes the output to conform with
the pairwise similarities and (ii) interaction potential which forces output nodes to be consistent so that Y is valid. During the optimization,
messages are propagated among output nodes to directly approach a valid adjacency matrix Y which is mostly consistent with the similarity
information.

The graph structure of the model is illustrated in Figure 7.
Each output node Yij is in N − 1 cliques: one association
clique with input pair Xi and Xj , and N−2 interaction cliques
consisting of Yij , Yik and Yjk.

D. Inference By Belief Propagation

With the factor graph and potentials defined, we can derive
a message formula based on the min-sum algorithm, which
is the equivalent for max-product algorithm when working
with energy functions [60]. We define a message aij(Yij) as a
function of variable Yij , representing the accumulated energy
so far for each state of the variable Yij . The main procedure
of our algorithm is as follows:

1. Initialize all messages as:

a0ij(Yij) = D(Yij), (6)

which is the message sent from the unary potential factor.
2. At iteration t = 1, 2, ...T , update the messages as:

atij(Yij) =
∑

k∈Nt−1(i,j)

min
Yik,Yjk

(at−1ik (Yik) + at−1jk (Yjk)

+ αV (Yij , Yik, Yjk)),

(7)

where we are summing up the messages from different factors
given a state of Yij . Within the sum, we are minimizing over
different states of Yik and Ykj .

3. The final state of the variable is determined by:

Ŷij = argmin
Yij

aTij(Yij), (8)

Here, N t−1(i, j) means the set of the points that are
adjacent to either i or j at (t−1) iteration, where by adjacent
we mean that it has a lower positive energy than the negative
one in that iteration, i.e. at−1ij (Yij = 1) > at−1ij (Yij = 0). As
mentioned in Section II-D, belief propagation is an approxi-
mation method for maximizing the posterior probability. It is
not guaranteed to find a global optimum. Thus, if there are still

inconsistent triplets after the third step, a transitive merge6 is
applied to ensure the clustering result Y is valid. There are
several issues worth discussing on this procedure:

First, this is not a standard Loopy Belief Propagation algo-
rithm for CRF in two ways: (1) the unary messages are sent
only once and (2) the messages are isotropic, i.e. a message
sent from a node Yij is the sum of all messages it receives.
We found that these modifications make the algorithm easier
to implement, use less memory, converge faster while have
little impact on the quality of the results.

Second, the messages could be normalized by subtracting
the same value from both states. Theoretically, it makes no
difference to the result, but could avoid numerical underflow
and provide stability.

Third, the received messages in Equation (7) only include
those neighbors k that are adjacent to at least one of i and j in
the last iteration, because the messages from other neighbors
would have the same value in both states. Thus it makes no
difference if we ignore those k /∈ N t−1(i, j). For the same
reason, we only need to update Yij whose N t−1(i, j) is not
empty.

Fourth, as we assume that α is a very large number, all of
the cases where V (Yij , Yik, Yjk) = 1 could be ignored when
taking the minimum in equation (7). For example, for Yij = 1,
we do not need to consider the cases where Yik = 0, Yjk = 1
or Yik = 1 and Yjk = 0. In all the other cases, because
V (Yij , Yik, Yjk) = 0, α disappears from the formula.

Given the above optimization, along with our use of adja-
cency lists and an update list, the complexity of the algorithm
is O(TNM2), where N is the number of data points, T is
the number of iterations, and M is the maximum degree7 of
any data point in any iteration. But it should be noted that
because M is not a fixed number here, in the worst case
the complexity could still become O(TN3). Besides, we only
choose to update the pairs that are in at least one inconsistent

6Linking all the positive pairs to build clusters. This can be done with linear
complexity by building a disjoint-set data structure.

7Number of adjacent points.

7

(a) noisy circles (b) noisy moons (c) varied

(d) aniso (e) blobs (f) no structure

Fig. 8: The result of proposed clustering on toy examples from
scikit-learn using a Radial Basis Function (RBF) kernel. We tune
the parameter γ according to the datasets. The colors indicate the
assigned label for each node.

triplet, so the update list is typically much shorter after several
iterations. On the LFW dataset, only 0.59% of the total pairs8

are updated, and no more than 1, 000 pairs are in the update
list after the fourth iteration.

We test the proposed clustering algorithm on a set of toy
examples from the scikit-learn library9. The results are shown
in Figure 8. Because we use the Radial Basis Function (RBF)
kernel for the similarity metric on the toy examples, the data
points are mainly grouped according to the Euclidean distances
between them. Although the number of clusters is not specified
in our algorithm, the main groups can be recovered in the
belief propogation procedure. The outliers are often assigned
as small, separate clusters.

Figure 9 shows how the number of inconsistent triplets de-
creases with iterations during clustering of the 13, 233 images
in the LFW dataset. The model converges rather quickly to
a stage where only a small number of inconsistent triplets
remain. Because the number of remaining inconsistent triplets
is usually very small, we do not explicitly force convergence
to 0 but apply a transitive merge on the current adjacency
matrix to attain the final valid clustering. On LFW, only 6
pairs change their states after we apply transitive merge.

E. Semi-supervised clustering

In semi-supervised or constrained clustering, we utilize the
given side information, usually in the form of “must-link” pairs
and “cannot-link” pairs. These pairs can either be specified
by users or automatically generated with another algorithm to
improve clustering performance. The must-links specify pairs
of face images that belong to the same identity, while the
cannot-links specify pairs that belong to different identities.
One way to make use of these pairs is to propagate the con-
straints. Because our framework is optimized by propagating
messages, it becomes quite straight forward to incorporate
these constraints: we change the unary potentials of the
constrained pairs based on the side information provided. If

8There are in all 87, 549, 528 pairs in the LFW dataset.
9http://scikit-learn.org/stable/auto examples/cluster/plot cluster

comparison.html

0 2 4 6 8 10
of iterations

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

of

 in
co

ns
is

t t
rip

le
ts

Fig. 9: Number of inconsistent triplets on LFW at each iteration. It
decreases rapidly until convergence.

we are very confident with the given constraints (as is the
case in our experiments which use ground-truth labels for side
information), we can set the positive unary potentials as 1 for
must-link and 0 for cannot-link constraints, resulting in very
large unary energies. Equation (7) states that very high energy
would be avoided when passing messages so the model can
still be optimized under these constraints.

F. Efficient Variant of the clustering algorithm using k-NN
Graph

The complexity of the proposed clustering algorithm de-
pends on the degrees of data points during the optimization.
However, since this number is not fixed, in the worst case
its complexity could still be close to O(TN3), where T and
N are the number of iterations and data points, respectively.
Therefore, we propose a variant of the algorithm which has a
fixed linear complexity. The idea is similar to the one in [2],
which takes advantage of approximate k-Nearest Neighbors (k-
NN) methods. Instead of estimating the adjacency of every pair
within the dataset, we optimize the joint posterior probability
of all Yij where (i, j) is an edge in the k-NN graph. These Yij
compose a subset of elements in the full adjacency matrix Y .
The same procedure outlined in section IV-D can still be used
for optimization with a few modifications: (1) The neighbor
list N(i) now is a fixed list given by the approximate k-NN
method, (2) we only update Yij where i ∈ N(j) or j ∈ N(i),
and (3) we only need to compute the unary potentials in
the initialization step for pairs which will be used in the
next iteration, i.e. they are neighbors or they have at least
one shared neighbor. While time complexity of this variant,
given a pre-computed k-NN graph, is also O(TNM2) as in
section IV-D, M is now a fixed number. In particular, we
use the same approximate k-NN method, k-d tree, with the
same configuration as in [2] to build the k-NN graph. The
complexity of building k-NN graph is O(N logN) with a fixed
search size. If we increase the search size linearly with the size
of the dataset, as in [2], it leads to O(N2) complexity. We use
a fixed search size of 2, 000 in our experiments.

8

TABLE I: BLUFR verification performance on LFW. ResNet was
trained on the combined VGG+CASIA-Webface dataset. Verification
Rates (VR) at a False Alarm Rate (FAR) are reported as (mean -
standard deviation) across 10 folds.

Network VR@FAR=0.1%

50-Layer Pre-activated ResNet 91.04%
50-Layer Pre-activated ResNet, 10-crop 92.22%
101-Layer Pre-activated ResNet 91.18%
101-Layer Pre-activated ResNet, 10-crop 92.10%

V. EXPERIMENTAL RESULTS

A. Face Representation Performance

We evaluate the performance of our representation using
ResNet on the BLUFR protocol [11]. Because the performance
of state-of-the-art face representations on standar LFW veri-
fication protocol has saturate, Liao et al. [11] made use of
the entire LFW dataset to design the BLUFR protocol. In
this protocol, a 10-fold cross-validation test is defined for
both face verification and open-set face identification. For
face verification, a Verification Rate (VR) is reported for
each split with a false alarm rate: FAR= 0.1%. For open-
set identification, Detection and Identification Rate (DIR) at
Rank-1 corresponding to FAR= 1% is computed.

Table I gives a summary of our face representation perfor-
mance on the BLUFR protocol’s verification experiment [11].
We trained 50 and 101-layer fully pre-activated ResNets on
the combined VGG and CASIA-Webface datasets (using our
cleaned version of VGG). A subset o 1, 000 images are ran-
domly selected from CASIA-Webface are kept as the valida-
tion set. The 50-layer network achieves a 91.04% verification
rate at 0.1% FAR after training for 37 epochs, at which point
the classification accuracy on the validation set stabilizes.
Increasing the network depth to 101 layers does not result in
a performance improvement. Using the 10-crop strategy leads
to a minor performance improvement (approximately 1% VR
at 0.1% FAR), at the cost of substantially increased feature
extraction time.

Our best results on BLUFR in Table I are: 92.22% VR
at 0.1% FAR for verification, and 62.05% DIR at 1% FAR
for open-set identification. This is comparable to some newly
reported results on the protocol. For example, Cheng at al. [61]
used a GoogLeNet-style Inception architecture combined with
traditional Joint-Bayes and attained a 92.19% VR at 0.1%
FAR. They further improved this result to 93.05% using
their method for estimating the Joint-Bayes parameters. Lv
et al. [62] proposed a data augmentation method (perturbing
detected facial landmark locations, prior to image alignment),
again using an Inception architecture, and attained a 63.73%
DIR at 1% FAR in open-set identification, using the fusion
of 3 models (the best single-model performance is 57.90%).
These results indicate that our results could potentially be
further improved, through the incorporation of metric learning
methods, or fusing multiple models.

B. Face Clustering

We use the 50-layer ResNet architecture, with 10-crop
(Table I) strategy as the representation for our clustering
experiments. We evaluate our clustering algorithm on two

0 0.2 0.4 0.6 0.8 1
cosine similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ge
nu

in
e

un
ar

y
po

te
nt

ia
l

=

Fig. 10: Transformation function used to map the cosine similarity
to the genuine unary probability ψu(Yij = 1). A threshold τ is used
to split the function into two pieces. The cosine similarity is non-
negative because the the features are extracted from the ReLU layer
of the last hidden layer in the ResNet.

unconstrained face datasets (LFW and IJB-B). Before applying
the message passing procedure, we obtain unary potentials
described in IV-C using a transformation function shown in
Figure 10. Threshold τ is the only parameter throughout our
experiments. Different τ values control the balance between
the recall rate and the precision rate of the resulting partition,
which are defined in V-B1. But it is worth emphasizing
that the transformation function itself (Figure 10) is not a
necessary part of the clustering algorithm and one may choose
other ways to initialize the unary potential. We use this
transformation function because it is easy to compute and
work well empirically. The same threshold τ = 0.7 is used
as default unless otherwise stated.

We call our algorithm Conditional Pairwise Clustering
(ConPaC), which is implemented in C++ and evaluated on
an Intel Xeon CPU clocked at 2.90GHz using 24 cores. The
ConPac algorithm is compared to the following benchmarks:
(1) k-means, (2) Spectral Clustering [59], (3) Sparse Subspace
Clustering (SSC) [30] (4) Affinity Propagation [63], (5) Ag-
glomerative Clustering, (6) Rank-order clustering [31], and
(7) Approx. Rank-order clustering [2]. We use the MATLAB
R2016a implementation of the k-means algorithm, and a
third-party MATLAB implementation of Spectral Clustering10.
We use the author’s implementation of SSC 11. For Affin-
ity Propagation and Agglomerative Clustering, we use the
scikit-learn implementation [64]. Since all the implementations
tested use built-in functions for the core steps, such as matrix
decomposition, the difference in the programming language
shouldn’t affect the run-time excessively, and we consider it
fair to compare the execution times of these implementations.

We use the same representation for all the algorithms except
Approx. Rank-order, for which we follow [2] because it
generates better clustering results. We use Euclidean distance
for k-means, RBF kernel for Affnity Propagation, and cosine
similarity for Spectral Clustering.

10http://www.mathworks.com/matlabcentral/fileexchange/
34412-fast-and-efficient-spectral-clustering/content/files/SpectralClustering.
m

11http://www.vision.jhu.edu/code/

9

Fig. 11: Example clusters by the proposed clustering algorithm on the LFW dataset. The first two rows show example impure clusters
while the other two rows show pure clusters. For impure clusters, different colors of bounding boxes indicate the images are from different
identities, and images without bounding boxes are from the same identity.

1) Evaluation Measures: Two measures are used to eval-
uate the clustering results, Pairwise F-measure and BCubed
F-measure. Both compute a F-score, which is the harmonic
mean of Precision and Recall. The difference between them
lies in the metrics used for precision and recall.

In Pairwise F-measure, Precision is defined as the fraction
of pairs that are correctly clustered together over the total
number of pairs that belong to the same class. Recall is defined
as the fraction of pairs that are correctly clustered together
over the total number of pairs that are in the same cluster. In
other words, we are using the labels for all the 1

2N(N − 1)
pairs in the dataset. Thus, we can define the True Positive
Pairs (TP), False Positive Pairs (FP) and False Negative Pairs
(FN). Then Precision and Recall can be calculated as:

Pairwise Precision =
TP

TP + FP
(9)

Pairwise Recall =
TP

TP + FN
(10)

BCubed F-measure [65] defines Precision as point preci-
sion, namely how many points in the same cluster belong to
its class. Similarly, point recall represents how many points
from its class appear in its cluster. Formally, we use L(i) and
C(i) to, respectively, denote the class and cluster of a point i,
and define the Correctness between two points i and j as:

Correctness(i, j) =

{
1, if L(i) = L(j) and C(i) = C(j)

0, if otherwise
(11)

The Precision and Recall are defined as:

BCubed Precision =
1

N

N∑
i=1

∑
j∈C(i)

Correctness(i, j)

|C(i)|
(12)

BCubed Recall =
1

N

N∑
i=1

∑
j∈L(i)

Correctness(i, j)

|L(i)|
(13)

where |C(i)| and |L(i)| denote the sizes of the sets C(i) and
L(i), respectively.

TABLE II: Comparison of the F-measures of the proposed algorithm
and other clustering algorithms on LFW dataset. The number of
identities (true number of clusters) in LFW is 5, 749. Run-time is
reported in the format of hh:mm:ss.

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

TPE [33]∗ 0.955 − 5, 351 −
k-means 0.098 0.680 5, 749 00 : 04 : 26
k-means 0.346 0.468 500 00 : 00 : 14
Spectral 0.033 0.559 5, 749 06 : 52 : 22
Spectral 0.257 0.249 75 01 : 00 : 56
SSC 0.186 0.430 500 00 : 31 : 52
Affinity Propagation 0.320 0.577 1, 203 00 : 06 : 56
Agglomerative 0.962 0.892 4, 500 00 : 03 : 04
Rank-Order 0.813 0.891 5, 699 00 : 00 : 33
Approx. Rank-Order 0.861 0.875 6, 801 00 : 00 : 12

ConPaC (proposed) 0.965 0.922 6, 352 00 : 00 : 39

∗ This result is reported in [33].

The F-measure, or F-score for both criteria is given by:

F =
2× Precision×Recall
Precision+Recall

(14)

Pairwise F-measure is a more commonly used measure, and
BCubed F-measure is the formal evaluation measure for the
IJB-B dataset. The difference between the two is that Pairwise
F-measure puts relatively more emphasis on large clusters
because the number of pairs grows quadratically with cluster
size, while under BCubed F-measure clusters are weighted
linearly based on their size.

2) Evaluation on the LFW Dataset: LFW is quite an imbal-
anced dataset, with only 1,680 classes (individuals) containing
more than one face. Since we cannot assume that our datasets
will be well balanced, we do the experiments on the whole
LFW dataset.

The number of clusters C is dynamically selected during the
update of the ConPaC, but it is required as an input parameter
for k-means and spectral clustering. So we first evaluate their
performance with the ground-truth or the true number of
clusters C, C = 5, 749. Then we repeat the clustering with
several different values and report the one that gives the best
performance.

Table II shows that the performance of k-means and spectral
clustering is poor with the ground-truth C. This is because

10

Fig. 12: Example clusters by the proposed clustering algorithm on two of the experiments in IJB-B clustering protocol, IJB-B-32 and IJB-
B-1024. The first and the second row show an impure and pure cluster on IJB-B-32 dataset, respectively. The third row and the fourth row
show an impure and pure cluster on IJB-B-1024 dataset, respectively. For impure clusters, red bounding boxes indicate the images are from
a different identity.

these two algorithms do not perform well with unbalanced
data. After tuning the parameter C, the proposed algorithm
still performs better than competing algorithms. Notice that
agglomerative clustering using average linkage performs much
better than k-means and spectral clustering. This is consistent
with our observation in Section IV-B since agglomerative clus-
tering also doesn’t assume a balanced dataset and focuses on
the pairwise similarities. We also compare the results with that
reported in Triplet Probabilistic Embedding (TPE) [33], which
uses agglomerative clustering on a different representation. For
the run-time, since the sizes of clusters in the LFW dataset are
mostly very small, the time complexity of ConPaC is low and
it take less than one minute to finish.

Some example clusters by ConPaC for LFW are shown in
Figure 11, where the first two rows show two impure clusters
while the other two show two pure clusters. Face images
in these clusters have different illumination conditions, back-
grounds, and poses. Given these challenges, the algorithm still
groups most images successfully according to true identities.
For the two impure clusters, the mis-grouped images are very
similar to other images in the same cluster.

3) Evaluation on the IJB-B Dataset: The results of the 7
experiments in the IJB-B clustering protocol are shown in
Table III. Since B-Cubed F-measure is the adopted evaluation
measure in the IJB-B protocol, we only report the result with
the best B-Cubed F-measure for each algorithm. Because of
the memory limit, some clustering algorithms cannot be tested
on larger datasets. In such cases, we report the result as “-”.
We set τ as 0.55, 0.6 and 0.65, respectively, for IJB-B-32,
IJB-B-64 and IJB-B-128 and 0.7 for the other datasets.

As the number of identities increases, the F-scores of both
competing and the proposed algorithm decrease. While the
proposed algorithm shows a significant advantage in terms of
F-score on the first few experiments, the gain diminishes as the
number of clusters increases. As explained in Section V-B6,
this decrease in performance with an increase in the number of
clusters is mainly due to the brittleness of the representation.

Another thing worth noticing is that the number of clusters
found by the proposed algorithm is much larger than the true
number of clusters. This is because a large number of points
are regarded as outliers by our algorithm and so they form

0 5000 10000
of constraints

0.96

0.97

0.98

0.99

1

F
-m

ea
su

re

LFW

random
key

0 5000 10000
of constraints

0.62

0.64

0.66

0.68

0.7

0.72

0.74

F
-m

ea
su

re

IJB-B-1024

random
key

Fig. 13: Performance of the proposed clustering algorithm on LFW
and IJB-B-1024 datasets after incorporating pairwise constraints.
Both random and key constraints improve clustering performance
in terms of pairwise F-score on the LFW dataset. However, for the
IJB-B-1024 dataset, only random constraints are able to boost the
performance.

singleton clusters. For this reason, we also report the number
of “non-singleton” clusters in parentheses, which contain at
least two points. The number of non-singleton clusters is closer
to the true number of clusters.

Some example clustering results on the IJB-B-32 and IJB-
B-1024 are shown in Figure 12. The first two rows show an
impure and a pure cluster on IJB-B-32 dataset, respectively.
The other two rows show an impure and a pure clsuter on
IJB-B-1024 dataset. Many face images in the impure clusters
have very large pose variations and are thus badly aligned,
diminishing the saliency of the representation.

4) Semi-supervised Clustering: As we mentioned in Sec-
tion IV-E, pairwise constraints could be naturally incorporated
into the framework of ConPaC without any modification of the
algorithm. Therefore in this section, we assume that we have
already been given a set of pairwise constraints and evaluate
whether the side-information could improve the clustering
performance. We consider two types of constraints:
• Random Constraints: must-links and cannot-links are

picked randomly from ground-truth positive and negative
pairs.

• Key Constraints: The similarities between every pair of
faces are sorted. Must-links are picked by choosing the
positive pairs (pairs from the same identity) with the low-
est similarities and cannot-links are picked by choosing
the negative pairs (faces from different identities) with
the highest similarities.

11

TABLE III: Comparison of the F-measures of the proposed algorithms and other clustering algorithm on IJB-B datasets. The number of
images in each dataset is given with the dataset name. Numbers of non-singleton clusters in the proposed algorithms are shown in parentheses.
“-” means that algorithm cannot be tested due to memory limit.

(a) IJB-B-32 (1,026)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.825 0.766 20 00 : 00 : 01
Spectral 0.630 0.720 30 00 : 00 : 01
SSC 0.532 0.665 30 00 : 00 : 12
Affinity Propagation 0.376 0.534 86 00 : 00 : 01
Agglomerative 0.787 0.795 30 00 : 00 : 01
Rank-Order 0.697 0.769 81 00 : 00 : 03
Approx. Rank-Order 0.223 0.526 85 00 : 00 : 02
ConPaC (proposed) 0.868 0.828 96 00 : 00 : 03

(42)

(b) IJB-B-64 (2,080)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.704 0.710 75 00 : 00 : 01
Spectral 0.564 0.654 50 00 : 00 : 02
SSC 0.467 0.614 50 00 : 00 : 44
Affinity Propagation 0.399 0.506 167 00 : 00 : 02
Agglomerative 0.635 0.738 75 00 : 00 : 05
Rank-Order 0.409 0.693 173 00 : 00 : 13
Approx. Rank-Order 0.163 0.543 236 00 : 00 : 03
ConPaC (proposed) 0.776 0.772 280 00 : 00 : 04

(93)

(c) IJB-B-128 (5,224)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.520 0.655 75 00 : 00 : 04
Spectral 0.377 0.620 100 00 : 00 : 12
SSC 0.275 0.547 100 00 : 05 : 19
Affinity Propagation 0.230 0.441 351 00 : 00 : 18
Agglomerative 0.787 0.750 150 00 : 00 : 34
Rank-Order 0.385 0.661 471 00 : 02 : 01
Approx. Rank-Order 0.302 0.653 631 00 : 00 : 05
ConPaC (proposed) 0.895 0.769 738 00 : 00 : 20

(243)

(d) IJB-B-256 (9,867)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.489 0.624 150 00 : 00 : 12
Spectral 0.333 0.562 150 00 : 01 : 00
SSC 0.278 0.498 150 00 : 26 : 30
Affinity Propagation 0.241 0.434 658 00 : 01 : 66
Agglomerative 0.671 0.725 350 00 : 01 : 57
Rank-Order 0.351 0.653 1, 033 00 : 06 : 37
Approx. Rank-Order 0.214 0.645 13, 55 00 : 00 : 07
ConPaC (proposed) 0.888 0.721 1, 862 00 : 00 : 48

(574)

(e) IJB-B-512 (18,251)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.429 0.587 500 00 : 00 : 46
Spectral 0.335 0.531 350 00 : 06 : 28
SSC 0.237 0.450 500 02 : 35 : 21
Affinity Propagation 0.251 0.432 1, 276 00 : 17 : 16
Agglomerative 0.567 0.687 750 00 : 04 : 45
Rank-Order 0.188 0.638 1, 958 00 : 23 : 49
Approx. Rank-Order 0.214 0.569 3, 758 00 : 00 : 12
ConPaC (proposed) 0.756 0.656 3, 981 00 : 02 : 10

(1, 175)

(f) IJB-B-1024 (36,575)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.423 0.572 1, 000 00 : 03 : 01
Spectral 0.265 0.495 750 00 : 45 : 43
SSC − − − −
Affinity Propagation 0.241 0.423 2, 500 01 : 37 : 38
Agglomerative 0.544 0.696 1500 00 : 28 : 21
Rank-Order 0.020 0.544 2, 831 01 : 40 : 30
Approx. Rank-Order 0.201 0.512 9, 553 00 : 00 : 23
ConPaC (proposed) 0.667 0.641 11, 258 00 : 08 : 39

(2, 303)

(g) IJB-B-1845 (68,195)

Pairwise BCubed # of
Algorithm F-measure F-measure Clusters Run-time

k-means 0.354 0.551 1500 00 : 11 : 49
Spectral − − − −
SSC − − − −
Affinity Propagation − − − −
Agglomerative − − − −
Rank-Order 0.005 0.267 4, 084 01 : 12 : 25
Approx. Rank-Order 0.299 0.450 20, 782 00 : 00 : 43
ConPaC (proposed) 0.611 0.634 15, 227 00 : 51 : 33

(4, 200)

Key constraints are difficult to acquire in realistic cases,
as such they are merely used to test the upper bound of
the improvement given constraints on pairs that could be
misleading. In both cases, we use knowledge of the ground
truth identity labels to sample an equal number of must-link
and cannot-link constraints. We then test the performance of
the algorithm with an increasing number of constraints. For
random constraints, we run 10 trials and report the average
performance. The results are reported in terms of pairwise F-
score.

We test our algorithm in a semi-supervised scenario on
LFW and IJB-B-1024 datasets. The results of semi-supervised
clustering are shown in Figure 13. On LFW, for both random

constraints and key constraints, the constraints always boost
the performance and the laerger the number of constraints,
the larger the improvement in F-score. This is because our
algorithm tries to find clustering results that are most consis-
tent with the unary potentials, and when more constraints are
provided, the unary potentials can be trusted more. Addition-
ally, the number of specified constraints in the experiment are
actually very small. For example, 10, 000 constraints account
for only 0.011% of the total number of all the possible
pairs in LFW. But due to message propagation, each pairwise
constraint impacts all related pairs. Thus, even a small number
of randomly picked constraints could boost the performance
significantly. For the 10, 000 random constraints, 98.33%

12

(a) Must-links

(b) Cannot-links

Fig. 14: Example pairs in the key constraints for IJB-B-1024 dataset.
Many must-links have extremely different facial appearances, even
though they may belong to the same identity. Cannot-links, on
contrary, involve some wrong labels and many extremely low-quality
images.

must-links and 99.99% cannot-links are satisfied at the end.
For key constraints, 98.42% must-links and 99.94% cannot-
links are satisfied.

On IJB-B-1024 dataset, as it is a larger dataset, 10, 000 con-
straints account for only 0.0015% of the total number of pairs.
The random constraints boost the performance significantly,
but the key constraints do not offer any benefits. Furthermore,
99.93% must-links and 75.17% cannot-links are satisfied for
random constraints, but only 3.02% must-links and 21.60%
cannot-links are satisfied for 10, 000 key constraints. Inspect-
ing into the problem, we found that the selected must-links
for key constraints on IJB-B-1024 usually have extremely
different facial appearances, while images in cannot-links are
mostly of very bad quality, as shown in Figure 14. Thus, the
algorithm may not satisfy these constraints as they are quite
incompatible with the rest of the dataset.

5) k-NN variant for large datasets: In this section, we
test the run-time and performance of the k-NN variant of the
proposed clustering. We use the same k-d tree library [66]
as used in [2] to generate the approximate k-NN graph. We
also use the same configuration for the k-d tree with k = 200
and we build four trees with a search size of 2, 000. We first
compare the performance of the algorithm using approximate
k-NN graph and full graph (original algorithm) on LFW and
IJB-B-1024. The clustering results are shown in Table IV. The
proposed k-NN variant performs well on both datasets. For
LFW, the pairwise F-measure is almost as good as the original
algorithm. For IJB-B-1024, we observe a large shift of the
distributions of similarities in the k-NN graph compared with
original distributions, especially for impostor pairs, as shown
in Figure 15. This is because the k-d tree is expected to select
only similar pairs for building the k-NN graph, and many
impostor pairs in IJB-B-1024 dataset turn out to be similar.

0 0.2 0.4 0.6 0.8 1
cosine similarity

0

0.05

0.1

0.15

0.2

0.25

fr
eq

ue
nc

y

IJB-B 1024
genuine
impostor

0 0.2 0.4 0.6 0.8 1
cosine similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

fr
eq

ue
nc

y

IJB-B-1024 knn graph
genuine
impostor

Fig. 15: The distributions of all genuine and impostor pairs in IJB-
B-1024 and pairs in k-NN graph. Both the impostor and genuine
distributions are shifted significantly in the k-NN graph.

TABLE IV: Performance of k-NN variant and original algorithm on
small and large datasets.

Pairwise # of
Dataset Version F-measure clusters Run-time

LFW full graph 0.965 6, 352 00 : 00 : 39
LFW k-d tree 0.960 6, 444 00 : 01 : 04
IJB-B-1024 full graph 0.668 8, 094 00 : 08 : 39
IJB-B-1024 k-d tree 0.536 11, 258 00 : 01 : 43
LFW + 1M k-d tree 0.940 536, 809 00 : 34 : 03
IJB-B-1024 + 1M k-d tree 0.541 616, 964 00 : 36 : 05

Using old threshold τ = 0.7 would make the majority of pairs
positive, thus we tune the threshold to τ = 0.75 for k-NN
variant when working on IJB-B-1024. Although a similar shift
is observed on LFW dataset, but it is smaller and we found
that there is no need for tuning the threshold. After tuning
the threshold, the F-measure of k-NN variant is also close
to the original one on IJB-B-1024. Using the same threshld
τ , we then test the performance of the k-NN variant on 1
million unlabeled face images along with LFW or IJB-B. The
1 million face images is a subset of the same private dataset
used in [2]. Since we do not have the labels for the 1 million
dataset, we apply pairwise F-measure to only the subset for
which we have labels (from LFW or IJB-B) but omit those for
which we do not have labels, namely the 1 million distractor
images. With such a big number of distractors, the resulting
F-measure is almost unchanged for both datasets. Notice that
for IJB-B-1024, the performance is, surprisingly, even better
when given the distractors. A plausible explanation for this
is that there are some high quality images in the 1 million
distractors that are from the same identities as in IJB-B, which
help to reveal the connections between the face images in IJB-
1024, while the other distractor images make less impact on
the clustering performance.

6) Influence of the initial similarity matrix: The motivation
and distinguishing feature of our algorithm is that it only
depends on the given pairwise similarities. In this subsection
we want to investigate how the clustering performance is
affected by the similarities and also how it is influenced by
the choice of parameter τ .

We first define similarity reliability as the pairwise F-
measure on adjacency matrix Z, where Zij ∈ {0, 1} is
determined by thresholding the cosine similarity between Xi

and Xj by τ . Different from Y , the graph represented by Z
may not be transitive, so it does not necessarily correspond to
a clustering result.

We then determine how the F-measures of Y and Z vary

13

0.6 0.65 0.7 0.75 0.8
threshold =

0.4

0.6

0.8

1

F
-m

ea
su

re
LFW

clustering f-measure
similarity reliability

(a)

0.6 0.65 0.7 0.75 0.8
threshold =

0.3

0.4

0.5

0.6

0.7

F
-m

ea
su

re

IJB-B-1024

clustering f-measure
similarity reliability

(b)

Fig. 16: Performance of the proposed algorithm with different thresh-
old values on LFW and IJB-B-1024 datasets.

0 0.25 0.5 0.75 1
precision

0

0.2

0.4

0.6

0.8

1

re
ca

ll

LFW

(a)

0 0.25 0.5 0.75 1
precision

0

0.2

0.4

0.6

0.8

1

re
ca

ll

IJB-B-1024

(b)

Fig. 17: Precision Recall curves for the proposed algorithm on LFW
and IJB-B-1024 datasets.

with different values of threshold τ . The results are shown
in Figure 16, and corresponding precision-recall curves are
shown in Figure 17. We can see that the clustering per-
formance changes smoothly with different parameter values.
Furthermore, the F-measure of clustering result Y is highly
correlated with that of Z. In other words, when the similarity
matrix is reliable, the clustering does a better job, and vice
versa.

To further see the relationship between the clustering per-
formance and the pairwise similarities, we compare the F-
measures of Y and that of Z on all the 7 experiments in IJB-B
dataset. We find that the two F-measures are almost linearly
correlated across all these experiments, with a correlation
coefficient of 0.9998. Therefore, we can state that we have
achieved our motivation to make full use of the input pairwise
similarities, and that the decrease in clustering performance on
IJB-B compared to LFW is due to the decrease in reliability
of the input pairwise similarities, which in turn depends on
the saliency of the face representation (feature vector).

VI. CONCLUSIONS

In this paper, we first trained a ResNet deep network
architecture on CASIA-Webface and VGG-Face datasets. The
representation from the proposed network shows a good per-
formance on the BLUFR face verification benchmark. Using
this representation, we proposed a new clustering algorithm,
called Conditional Pairwise Clustering (ConPaC), which learns
an adjacency matrix directly from the given similarity matrix.
The clustering problem is modeled as a structured prediction
problem using a Conditional Random Field (CRF) and is
inferred by Loopy Belief Propagation. The proposed algorithm
outperforms several well known clustering algorithms on LFW
and IJB-B unconstrained datasets and it can also naturally

incorporate pairwise constraints to further improve clustering
results. We also propose a k-NN variant of ConPaC which is
capable of clustering millions of face images. Our future work
would include finding better unary potentials for more robust
face clustering and also incorporating pairwise constraints into
the k-NN variant.

REFERENCES

[1] J. C. Klontz and A. K. Jain, “A case study of automated face recognition:
The Boston Marathon bombings suspects,” IEEE Computer, vol. 46,
no. 11, 2013.

[2] C. Otto, D. Wang, and A. K. Jain, “Clustering millions of faces by
identity,” IEEE Trans. on PAMI, 2017.

[3] A. Nech and I. Kemelmacher-Shlizerman, “Level playing field for
million scale face recognition,” arXiv:1705.00393, 2017.

[4] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[5] C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. Adams, T. Miller,
N. Kalka, A. K. Jain, J. A. Duncan, K. Allen, J. Cheney, and P. Grother,
“Iarpa janus benchmark-b face dataset,” in CVPR Workshop on Biomet-
rics, 2017.

[6] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen,
P. Grother, A. Mah, M. Burge, and A. K. Jain, “Pushing the frontiers of
unconstrained face detection and recognition: IARPA Janus benchmark
A,” in CVPR, 2015.

[7] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, 2004.

[8] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from
scratch,” arXiv:1411.7923, 2014.

[9] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[11] S. Liao, Z. Lei, D. Yi, and S. Z. Li, “A benchmark study of large-scale
unconstrained face recognition,” in IJCB, 2014.

[12] M. Turk and A. Pentland, “Face recognition using eigenfaces,” in CVPR,
1991.

[13] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Trans. on PAMI, vol. 23, no. 6, 2001.

[14] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. on PAMI,
vol. 28, no. 12, 2006.

[15] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on PAMI, vol. 31,
no. 2, 2009.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[18] C.-C. Hsu and C.-W. Lin, “Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image data,”
arXiv:1705.07091, 2017.

[19] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
gap to human-level performance in face verification,” in CVPR, 2014.

[20] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from
predicting 10,000 classes,” in CVPR, 2014.

[21] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face represen-
tation by joint identification-verification,” in NIPS, 2014.

[22] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are
sparse, selective, and robust,” in CVPR, 2015.

[23] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition
with very deep neural networks,” arXiv:1502.00873, 2015.

[24] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revisited:
A joint formulation,” in ECCV, 2012.

[25] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in CVPR, 2015.

[26] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, 2010.

[27] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering
appearances of objects under varying illumination conditions,” in CVPR,
2003.

14

[28] J. Cui, F. Wen, R. Xiao, Y. Tian, and X. Tang, “Easyalbum: an interactive
photo annotation system based on face clustering and re-ranking,” in
ACM SIGCHI Conference on Human factors in Computing Systems,
2007.

[29] Y. Tian, W. Liu, R. Xiao, F. Wen, and X. Tang, “A face annotation
framework with partial clustering and interactive labeling,” in CVPR,
2007.

[30] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in CVPR, 2009.
[31] C. Zhu, F. Wen, and J. Sun, “A rank-order distance based clustering

algorithm for face tagging,” in CVPR, 2011.
[32] R. Vidal and P. Favaro, “Low rank subspace clustering (lrsc),” Pattern

Recognition Letters, vol. 43, 2014.
[33] S. Sankaranarayanan, A. Alavi, C. D. Castillo, and R. Chellappa, “Triplet

probabilistic embedding for face verification and clustering,” in BTAS,
2016.

[34] C. Otto, B. Klare, and A. Jain, “An efficient approach for clustering face
images,” in ICB, 2015.

[35] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl et al., “Constrained k-
means clustering with background knowledge,” in ICML, 2001.

[36] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning with application to clustering with side-information,” in NIPS,
2002.

[37] S. Basu, M. Bilenko, and R. J. Mooney, “A probabilistic framework for
semi-supervised clustering,” in KDD, 2004.

[38] I. Davidson and S. Ravi, “Agglomerative hierarchical clustering with
constraints: Theoretical and empirical results,” in European Conference
on Principles of Data Mining and Knowledge Discovery, 2005.

[39] Z. Lu and M. A. Carreira-Perpinan, “Constrained spectral clustering
through affinity propagation,” in CVPR, 2008.

[40] X. Wang and I. Davidson, “Flexible constrained spectral clustering,” in
KDD, 2010.

[41] S. Basu, I. Davidson, and K. Wagstaff, Constrained clustering: Advances
in Algorithms, Theory, and Applications. CRC Press, 2008.

[42] C. Sutton and A. McCallum, “An introduction to conditional random
fields for relational learning,” Introduction to Statistical Relational
Learning, 2006.

[43] J. Lafferty, A. McCallum, F. Pereira et al., “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
ICML, 2001.

[44] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán, “Multiscale condi-
tional random fields for image labeling,” in CVPR, 2004.

[45] D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in perspective,”
International Journal of Computer Vision, vol. 80, no. 1, 2008.

[46] V. Koltun, “Efficient inference in fully connected crfs with gaussian edge
potentials,” NIPS, 2011.

[47] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, 1989.

[48] I. K. K. M. Liang-Chieh Chen, George Papandreou and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected crfs,” ICLR, 2015.

[49] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[50] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-level
vision,” International Journal of Computer Vision, vol. 40, no. 1, 2000.

[51] B. J. Frey and D. J. MacKay, “A revolution: Belief propagation in graphs
with cycles,” NIPS, 1998.

[52] C. Yanover and Y. Weiss, Approximate Inference and Protein-folding.
Hebrew University of Jerusalem, 2002.

[53] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Transactions on Information Theory, vol. 51, no. 7, 2005.

[54] C. Sutton, A. McCallum et al., “An introduction to conditional random
fields,” Foundations and Trends in Machine Learning, vol. 4, no. 4,
2012.

[55] D. Wang, C. Otto, and A. K. Jain, “Face search at scale,” IEEE Trans.
on PAMI, 2016.

[56] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in NIPS Workshop on Big Learning,
2011.

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR, 2015.

[58] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. on PAMI, vol. 22, no. 8, 2000.

[59] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis
and an algorithm,” in NIPS, 2001.

[60] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linköping University, 1996.

[61] C. Cheng, J. Xing, Y. Feng, D. Li, and X.-D. Zhou, “Bootstrapping joint
bayesian model for robust face verification,” in ICB, 2016.

[62] J.-J. Lv, C. Cheng, G.-D. Tian, X.-D. Zhou, and X. Zhou, “Landmark
perturbation-based data augmentation for unconstrained face recogni-
tion,” Signal Processing: Image Communication, 2016.

[63] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, 2007.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, 2011.

[65] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of
extrinsic clustering evaluation metrics based on formal constraints,”
Information Retrieval, vol. 12, no. 4, 2009.

[66] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Trans. on PAMI, vol. 36, no. 11, 2014.

Yichun Shi received his B.S degree in the De-
partment of Computer Science and Engineering at
Shanghai Jiao Tong University in 2016. He is now
working towards the Ph.D. degree in the Department
of Computer Science and Engineering at Michigan
State University. His research interests include pat-
tern recognition and computer vision.

Charles Otto received his B.S. and Ph.D. degrees
in the Department of Computer Science and Engi-
neering at Michigan State University in 2008 and
2016, respectively. He was a research engineer at
IBM during 2006-2011. He is currently employed
at Noblis, Reston, VA. His research interests include
pattern recognition, and computer vision.

Anil K. Jain is a University distinguished professor
in the Department of Computer Science and Engi-
neering at Michigan State University. His research
interests include pattern recognition and biometric
authentication. He served as the editor-in-chief of the
IEEE Transactions on Pattern Analysis and Machine
Intelligence (1991-1994), a member of the United
States Defense Science Board, and and is a member
of the National Academy of Engineering.

